| Peer-Reviewed

Proximate and Amino Acid Composition of Wild and Cultivated Edible Mushrooms Collected from Ethiopia

Received: 31 January 2015    Accepted: 9 March 2015    Published: 19 March 2015
Views:       Downloads:
Abstract

First four cultivated (P.ostreatus, L.edodes, A.bisporus#1, A. bisporus#2) and eight wild (A.campestris, L.sulphureus, T.clypeatus, T.microcarpus#1, T.aurantiacus, T.microcarpus#2, T.letestui and Termitomyces spps) edible mushrooms collected from Ethiopia were analyzed for their proximate composition. Then to measure the quality of the crude protein, nine mushrooms were selected for further investigation of their amino acid composition. The proximate (g/100g) composition in dry weight basis was significantly (P<0.05) varied and ranged: protein 6.84-36.7, fat 1.34-5.16, ash 1.75 - 25.3 (T.microcarpus#2), dietary fiber 6.40-13.4, utilizable carbohydrate 32.3-82.3 and energy 266.8 -381.1 kcal on average. All mushrooms contained 18 amino acids ranging in percentage (%): Asp (4.87-10.4), Glu (0.64-2.75), Ser (1.46-2.64), Asn (1.90-4.45), Gln (1.06-4.51), His-Gly-Thr (4.05-15.9), Ala (1.07-6.6), Arg (1.62-6.77), Tyr (1.176-10.0), Cys-SS-Cys (1.08-3.67), Val-Met (2.27-6.15), Phe (0.93-1.75), Ile (0.84-1.71), Leu (0.79-9.66) and Lys (0.869-2.37). Hence, the edible mushrooms have good nutrition value and could be a good addition to diet of the Ethiopian people.

Published in Journal of Food and Nutrition Sciences (Volume 3, Issue 2)
DOI 10.11648/j.jfns.20150302.14
Page(s) 48-55
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Mushroom, Wild, Cultivated, Proximate, Amino Acid

References
[1] AOAC. (1995). Official methods of analysis (16th ed.). Arlighton VA, USA: Association of Official Analytical Chemists.
[2] AOAC. (2000). Offical methods of analysis (17th ed.). USA: AOAC International, Method 923.03.
[3] Anders, J. C. (2002). Advances in amino acid analysis. BioPharm International , 4, 32–39.
[4] Bartolomeo, M. P., & Maisano, F. (2006). Validation of a reversed-phase HPLC method for quantitative Amino Acid Analysis. Journal of Biomolecular Techniques , 17, 131-137.
[5] Cheung, P. (1997). Dietary fiber content and composition of some edible fungi determined by two methods of analysis. Journal ofthe Science of Food and Agriculture , 72, 255-260.
[6] Crisan, E. V., & Sands, A. (1978). Nutrtional value. In S. T. Chang, & W. A. Hayes, The biology and cultivation of edible mushrooms (pp. 137-165). New York: Academic Press.
[7] Demirbas, A. (2002). Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chemistry , 38, 89-93.
[8] Díez, A., & Alvarez, A. (2001). Compositional and nutritional studies on two wild edible mushrooms from Northwest Spain. Food Chemistry , 75, 417-422.
[9] Hall, I. N., Stefenson, S. L., Buchanan, P. K., Yun, W., & Cole, A. L. (2003). Edible and Poisonous Mushrooms of the World. Cambridge: Timber Press, Inc.
[10] Hӓrkönen, M., Niemelӓ, T., & Mwasumbi, L. (2003). Tanzanian Mushrooms: Edible, harmful and other Fungi. Helsinki: Norrlina, 10, 1-200.
[11] Hobbs, C. (1986). Medicinal mushrooms: an exploration of tradition,healing and culture. Tennessee: Botanica Press Summertown.
[12] Jones, B. N. (1986). Amino Acid Analysis by o-Phthaldialdehyde precolumn derivatization and reverse- phase HPLC. In J. E. Shively, Methods of protein microcharacterization: A Practical Handbook (pp. 121-151). California: Springer Science + Business Media, LLC.
[13] Kalač, P. (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry , 113, 9–16.
[14] Kivi, J. T. (2000). Amino acids. In L. M. Nollet, Food analysis by HPLC (pp. 55-97). NewYork: Marcel Dekker, Inl.
[15] Kurzman, R. H. (1997). Nutrition from mushrooms, understanding and reconciling available data. Mycoscience , 38, 247-253.
[16] Lombardi, R. (2002). Mycological medicine . Functional Food and Nutraceuticals , 1, 26-28.
[17] Manzi, P., Aguzzi, A., Vivanti, V., Paci, M., & Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food Chemistry , 73, 321-325.
[18] Manzi, P., Gambelli, L., Marconi, S., Vivanti, V., & Pizzoferrato, L. (1999). Nutrients in edible mushrooms: An interspecies comparative study. Food Chemistry, 65, 477-482.
[19] Mattila, P., Lampi, A. M., Ronkainen, R., Toivo, J., & Piironenen, V. (2002). Sterol and vitamin D2 contents in some wild and cultivated mushrooms. Food Chemistry , 76, 313-318.
[20] Mattila, P., Könkö, K., Eurola, M., Pihlava, J., Astola, J., Valtonen, L., et al. (2001). Contents of vitamins, mineral Elements and some Phenolic compounds in cultivated mushrooms. Journal of Agricultural and Food Chemistry, 49, 2343-2348.
[21] Mendil, D., Uluozlu, O. D., Hasdemir, E., & Caglar, A. (2004). Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chemistry , 88, 281-285.
[22] Mengerink, Y., Kutlán, D., Tóth, F., Csámpai, A., & Molnár-Perl, I. (2002). Advances in the evaluation of the stability and characteristics of the amino acid and amine derivatives obtained with the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-L-cysteine reagnets: HPLC-mass spectrometry study. Journal of Chromatography A , 949:99–124.
[23] Miles, P. G., & Chang, S. T. (1997). Mushroom Biology, Concise Basics and Current Developments. Singapore: World Scientific.
[24] Ouzouni, P. K., Veltsistas, P. G., Paleologos, E. K., & Riganakos, K. A. (2007). Determination of metal content in wild edible mushroom species from regions of Greece. Journal of Food Composition and Analysis , 20, 480–486.
[25] Ouzoui, P. K., Petridis, D., Koller, W. D., & Riganakos, K. A. ( 2009). Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chemistry , 115, 1575–1580.
[26] Sanmee, R., Dell, B., Lumyong, P., Izumori, K., & Lumyong, S. (2003). Nutritive value of popular wild edible mushrooms from Northern Thailand. Food Chemistry , 82, 527–532.
[27] Shimadzu. (2013). Analytical methods for amino acids. Retrieved June 28, 2013, from Shimadzu Corporation: http://www.shimadzu.com/an/hplc/support/lib/lctalk/53/53intro.htm.
[28] Weaver, J. C., Kroger, M., & Kneebone, L. R. (1977). Comparative protein studies (Kjeldahl, dye binding, amino acid analysis) of nine strains of Agaricus bisporus (Lange) Imbach mushrooms. Journal of Food Science , 42, 364–366.
[29] Van Der Westhizen, G. A., & Eicker, A. (1994). Field Guide: Mushrooms of South Africa. Singapore: Kyodo Printing Co. ptv. Ltd.
[30] Vetter, J. (1993). Chemical composition of eight edible mushrooms. Zeitschrift für Lebensmittel Untersuchung und Forschung , 196, 224–227.
Cite This Article
  • APA Style

    Ashagrie Z. Woldegiorgis, Dawit Abate, Gulelat D. Haki, Gregory R. Ziegler. (2015). Proximate and Amino Acid Composition of Wild and Cultivated Edible Mushrooms Collected from Ethiopia. Journal of Food and Nutrition Sciences, 3(2), 48-55. https://doi.org/10.11648/j.jfns.20150302.14

    Copy | Download

    ACS Style

    Ashagrie Z. Woldegiorgis; Dawit Abate; Gulelat D. Haki; Gregory R. Ziegler. Proximate and Amino Acid Composition of Wild and Cultivated Edible Mushrooms Collected from Ethiopia. J. Food Nutr. Sci. 2015, 3(2), 48-55. doi: 10.11648/j.jfns.20150302.14

    Copy | Download

    AMA Style

    Ashagrie Z. Woldegiorgis, Dawit Abate, Gulelat D. Haki, Gregory R. Ziegler. Proximate and Amino Acid Composition of Wild and Cultivated Edible Mushrooms Collected from Ethiopia. J Food Nutr Sci. 2015;3(2):48-55. doi: 10.11648/j.jfns.20150302.14

    Copy | Download

  • @article{10.11648/j.jfns.20150302.14,
      author = {Ashagrie Z. Woldegiorgis and Dawit Abate and Gulelat D. Haki and Gregory R. Ziegler},
      title = {Proximate and Amino Acid Composition of Wild and Cultivated Edible Mushrooms Collected from Ethiopia},
      journal = {Journal of Food and Nutrition Sciences},
      volume = {3},
      number = {2},
      pages = {48-55},
      doi = {10.11648/j.jfns.20150302.14},
      url = {https://doi.org/10.11648/j.jfns.20150302.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jfns.20150302.14},
      abstract = {First four cultivated (P.ostreatus, L.edodes, A.bisporus#1, A. bisporus#2) and eight wild (A.campestris, L.sulphureus, T.clypeatus, T.microcarpus#1, T.aurantiacus, T.microcarpus#2, T.letestui and Termitomyces spps) edible mushrooms collected from Ethiopia were analyzed for their proximate composition. Then to measure the quality of the crude protein, nine mushrooms were selected for further investigation of their amino acid composition. The proximate (g/100g) composition in dry weight basis was significantly (P<0.05) varied and ranged: protein 6.84-36.7, fat 1.34-5.16, ash 1.75 - 25.3 (T.microcarpus#2), dietary fiber 6.40-13.4, utilizable carbohydrate 32.3-82.3 and energy 266.8 -381.1 kcal on average. All mushrooms contained 18 amino acids ranging in percentage (%): Asp (4.87-10.4), Glu (0.64-2.75), Ser (1.46-2.64), Asn (1.90-4.45), Gln (1.06-4.51), His-Gly-Thr (4.05-15.9), Ala (1.07-6.6), Arg (1.62-6.77), Tyr (1.176-10.0), Cys-SS-Cys (1.08-3.67), Val-Met (2.27-6.15), Phe (0.93-1.75), Ile (0.84-1.71), Leu (0.79-9.66) and Lys (0.869-2.37). Hence, the edible mushrooms have good nutrition value and could be a good addition to diet of the Ethiopian people.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Proximate and Amino Acid Composition of Wild and Cultivated Edible Mushrooms Collected from Ethiopia
    AU  - Ashagrie Z. Woldegiorgis
    AU  - Dawit Abate
    AU  - Gulelat D. Haki
    AU  - Gregory R. Ziegler
    Y1  - 2015/03/19
    PY  - 2015
    N1  - https://doi.org/10.11648/j.jfns.20150302.14
    DO  - 10.11648/j.jfns.20150302.14
    T2  - Journal of Food and Nutrition Sciences
    JF  - Journal of Food and Nutrition Sciences
    JO  - Journal of Food and Nutrition Sciences
    SP  - 48
    EP  - 55
    PB  - Science Publishing Group
    SN  - 2330-7293
    UR  - https://doi.org/10.11648/j.jfns.20150302.14
    AB  - First four cultivated (P.ostreatus, L.edodes, A.bisporus#1, A. bisporus#2) and eight wild (A.campestris, L.sulphureus, T.clypeatus, T.microcarpus#1, T.aurantiacus, T.microcarpus#2, T.letestui and Termitomyces spps) edible mushrooms collected from Ethiopia were analyzed for their proximate composition. Then to measure the quality of the crude protein, nine mushrooms were selected for further investigation of their amino acid composition. The proximate (g/100g) composition in dry weight basis was significantly (P<0.05) varied and ranged: protein 6.84-36.7, fat 1.34-5.16, ash 1.75 - 25.3 (T.microcarpus#2), dietary fiber 6.40-13.4, utilizable carbohydrate 32.3-82.3 and energy 266.8 -381.1 kcal on average. All mushrooms contained 18 amino acids ranging in percentage (%): Asp (4.87-10.4), Glu (0.64-2.75), Ser (1.46-2.64), Asn (1.90-4.45), Gln (1.06-4.51), His-Gly-Thr (4.05-15.9), Ala (1.07-6.6), Arg (1.62-6.77), Tyr (1.176-10.0), Cys-SS-Cys (1.08-3.67), Val-Met (2.27-6.15), Phe (0.93-1.75), Ile (0.84-1.71), Leu (0.79-9.66) and Lys (0.869-2.37). Hence, the edible mushrooms have good nutrition value and could be a good addition to diet of the Ethiopian people.
    VL  - 3
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia

  • Department of Life Sciences, Addis Ababa University, College of Natural Sciences, Addis Ababa, Ethiopia

  • Center for Food Science and Nutrition, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia

  • Department of Food Science, the Pennsylvania State University, University Park, United States of America

  • Sections