Chronic Use of Anabolic Steroids and the Effects on the Neuronal Density of the Cerebral Cortex and Hippocampus in Mice
American Journal of Sports Science
Volume 6, Issue 3, September 2018, Pages: 122-129
Received: Aug. 8, 2018; Accepted: Aug. 21, 2018; Published: Sep. 11, 2018
Views 769      Downloads 54
Dauanda Kécia Silva, Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
Alessandra Esteves, Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
Flávia Da Ré Guerra, Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
Evelise Aline Soares, Medical School, Federal University of Alfenas, Alfenas, Brazil
Denismar Alves Nogueria, Institute of Exact Sciences, Department of Statistics, Federal University of Alfenas, Alfenas, Brazil
Petrus Pires Marques, Medical School, Department of Morphology, José Vellano University, Unifenas, Alfenas, Brazil
Wagner Costa Rossi Junior, Institute of Biomedical Sciences, Department of Anatomy, Federal University of Alfenas, Alfenas, Brazil
Article Tools
Follow on us
This study analyzed the effects of the chronic use of these drugs on the neuronal density of mice cerebral cortex and hippocampus. Materials and methods: 40 male Swiss mice were used, divided into 4 groups (n=10): GI-Control (0,02ml/Kg/week of saline solution), GII- treated with anabolic steroid Durateston® (83,3mg/Kg/week) GIII- treated with anabolic steroid Deca Durabolin® (16,6mg/Kg/week) e GIV- treated with the two anabolic steroids, concomitantly. The mice were treated for sixty days (60) and practiced swimming three times a week. The brain fragments were processed following the standardized sequence in conventional histological procedures and stained using cresyl violet. For the neuronal density analysis, the simple random count methodology was used. Results: Data revealed a significant reduction in the neuronal density of the groups treated with anabolic steroids, the limbic area had an estimated decrease of 16.44% in group III and 29.21% in group IV; the motor area the groups II, III, and IV presented a reduction of 17.63%, 15.35%, and 12.23%, and in the sensory area 15.22%, 16.41% and 21.59%, respectively; the groups II, III, and IV of the Ca1 area of the hippocampus showed a neuronal loss of 23.5%, 27.8%, and 36.36%, while groups II, III and IV of the Ca2 area there was a reduction of 10.37%, 11.83%, and 16.34%. In conclusion, the chronic use of AAS can be harmful to the nervous system since the neuronal reduction can bring structural and functional damages with possible consequences the whole organism.
Steroids, Cerebral Cortex, Hippocampus, Neuronal Density
To cite this article
Dauanda Kécia Silva, Alessandra Esteves, Flávia Da Ré Guerra, Evelise Aline Soares, Denismar Alves Nogueria, Petrus Pires Marques, Wagner Costa Rossi Junior, Chronic Use of Anabolic Steroids and the Effects on the Neuronal Density of the Cerebral Cortex and Hippocampus in Mice, American Journal of Sports Science. Vol. 6, No. 3, 2018, pp. 122-129. doi: 10.11648/j.ajss.20180603.18
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
G. Kanayama, J. I. Hudson, H. G. Pope Jr. Illicit Anabolic Androgenic Steroid Use. Horm Behav, 58 (2010) 111–121. doi: 10.1016/j.yhbeh.2009.09.006.
E. Ozcagli, M. Kara, T. Kotil, P. Fragkiadaki, M. N. Tzatzarakis, C. Tsitsimpikou, P.D. Stivaktakis, D. Tsoukalas, D. A. Spandidos, A. M. Tsatsakis, B. Alpertunga. Stanozolol administration combined with exercise leads to decreased telomerase activity possibly associated with liver aging, 42 (2018) 405-413. doi: 10.3892/ijmm.2018.3644.
S. D. Althobiti, N. M. Alqurashi, A. S. Alotaibi, T. F. Alharthi, K. A. Alswat. Prevalence, Attitude, Knowledge, and Practice of Anabolic Androgenic Steroid (AAS) Use Among Gym Participants, 30 (2018) 49-52. doi: 10.5455/msm.2018.30.49-52.
J. A. B. Iriart, J. C. Chaves, R. G. Orlean. Culto ao corpo e uso de anabolizantes entre praticantes de musculação. Cad. Saúde Pública, 25 (2009) 773-782. doi:10.1590/S0102-311X2009000400008.
A. Goldman, S. Basaria. Adverse health effects of androgen use, 464 (2018) 46-55. doi: 10.1016/j.mce.2017.06.009.
A. Urhausen, A. Torsten, K. Wilfried. Reversibility of the effects on blood cells, lipids, liver function and hormones in former anabolic–androgenic steroid abusers. J Steroid Biochem Mol Biol, 84 (2003) 369–375.
B. D. Anawalt. Detection of anabolic androgenic steroid use by elite athletes and by members of the general public, 464 (2018) 21-27. doi: 10.1016/j.mce.2017.09.027.
E. Tasgin, S. Lok, N. Demir. Combined usage of testosterone and nandrolone may cause heart damage. African Journal of Biotechnology, 10 (2011) 3766-3768. doi: 10.5897/AJB10.2714.
M. Mędraś, A. Brona, P. Jóźków. The Central Effects of Androgenic-anabolic Steroid Use. J Addict Med. 0 (2018). doi: 10.1097/ADM.0000000000000395.
E. Vorona, E. Nieschlag. Adverse effects of doping with anabolic androgenic steroids (AAS) in competitive athletics, recreational sports and bodybuilding. Minerva Endocrinol (2018). doi: 10.23736/S0391-1977.18.02810-9.
K. Y. Salas-Ramirez, P. R. Montalto, C. L. Sisk. Anabolic steroids have long-lasting effects on male social behaviors. Behav Brain Res. 208 (2010) 328–335. doi: 10.1016/j.bbr.2009.11.026.
R. L. Cunningham, B. J. Claiborne, M. Y. Mcginnis. Pubertal exposure to anabolic androgenic steroids increases spine densities on neurons in the limbic system of male rats. Neuroscience, 150 (2007) 609-615. doi: 10.1016/j.neuroscience.2007.09.038.
B. Damião, G. G. Souza, D. A. Nogueira, W. C. Rossi Junior, G. J. M. Fernandes, A. Esteves. Quantificação de corpos de neurônios em camundongos submetidos ao uso de esteroides anabolizantes. Revista de Neurociências, 20 (2012) 68-72.
C. Pomara, M. Neri, S. Bello, C. Fiore, I. Riezzo, E. Turillazzi. Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: A review. Curr Neuropharmacol, 13 (2015) 132–145. doi: 10.2174/1570159X13666141210221434.
A. C. Freitas, B. Damião, D. M. Alves, M. Ribeiro, G. J. M Fernandes, W. C. Rossi Junior, A. Esteves. Efeitos dos anabolizantes sobre a densidade de neurônios dos núcleos da base. Rev Bras Med Esporte, 23 (2017) 213-216. doi:10.1590/1517-869220172303151688.
J. M. Ritter. Sex, steroids and anabolic androgens in athletics. Br J Clin Pharmacol, 74 (2012) 1-2. doi: 10.1111/j.1365-2125.2012.04329.x.
T. R. Morrison, L. A. Ricci, R. H. Melloni Jr. Anabolic/androgenic steroid administration during adolescence and adulthood differentially modulates aggression and anxiety. Horm Behav, 69 (2015) 132-138. doi: 10.1016/j.yhbeh.2015.01.009.
M. M. Onakomaiya, L. P. Henderson. Mad men, women and steroid cocktails: a review of the impact of sex and other factors on anabolic androgenic steroids effects on affective behaviors. Psychopharmacology, 233 (2016) 549-69. doi: 10.1007/s00213-015-4193-6.
K. J. Brower. Anabolic steroids. Psychiatr Clin North Am, 16 (1993) 97–103.
A. S. Clark, A. S. Fast. Comparison of the effects of 17 alpha-methyltestosterone, methandrostenolone, and nandrolone decanoate on the sexual behavior of castrated male rats. Behav Neurosci, 110 (1996) 1478-86.
D. P. Venâncio, A. C. L. Nobrega, S. Tufik, M. T. Melo. Avaliação descritiva sobre o uso de esteroides anabolizantes e seu efeito sobre as variáveis bioquímicas e neuroendócrinas em indivíduos que praticam exercício resistido. Rev Bras Med do Esporte, 16 (2010) 191-195. doi:10.1590/S1517-86922010000300007.
West MJ. New stereological method of counting neurons. Neurobiol Aging, 14 (1993) 275-285.
C. A. Mandarim-de-Lacerda. Manual de quantificação Morfológica: Morfometria, Alometria e Estereologia. 2.ed. Rio de Janeiro: CEBIO, 1994.
C. A. Mandarim-de-Lacerda. Stereological tools in biomedical research. An Acad Bras Cien, 75 (2003) 469-486.
B. Pakkenberg, H. J. Gundersen. Neocortical neuron number in humans: effect of sex and age. J Comp Neurol, 384 (1997) 312-20.
A. G. Fragkaki, Y. S. Angelis, M. Koupparis, A. Tsantili-Kakoulidou, C. Georgakopoulos. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to the anabolic and androgenic activities applied modifications in the steroidal structure. Steroids, 74 (2009) 172–197. doi: 10.1016/j.steroids.2008.10.016.
L. L. Brunton, J. S. Lazo, K. L. Parker. The pharmacological basis of therapeutics. Occup Environ Med, 64 (2007). doi:10.1136/oem.2007.033902.
DEF Dicionário de especialidades farmacêuticas. 42ª edição, Editora EPUC, 2014.
G. Ambar, S. Chiavegatto. Anabolic-androgenic steroid treatment induces behavioral disinhibition and downregulation of serotonin receptor messenger RNA in the prefrontal cortex and amygdala of male mice. Genes Brain Behav, 8 (2009) 161–173. doi: 10.1111/j.1601-183X.2008.00458.x.
U. L. Rossbach, P. Steensland, F. Nyberg, P. Le Grevés. Nandrolone-induced hippocampal phosphorylation of NMDA receptor subunits and ERKs. Biochem Biophys Res Commun, 357 (2007) 1028-1033. doi: 10.1016/j.bbrc.2007.04.037.
P. Le Grevès, W. Huang, P. Johansson, M. Thörnwall, Q. Zhou, F. Nyberg. Effects of an anabolic-androgenic steroid on the regulation of the NMDA: receptor NR1, NR2A e NR2B subunit mRNAsin brain regions of the male rat. Neurosci Lett, 226 (1997) 61-64. doi: 10.1016/S0304-3940 (97) 00244-9.
R. Orlando, A. Caruso, G. Molinaro, M. Motolese, F. Matrisciano, G. Togna, D. Melchiorri, F. Nicoletti, V. Bruno. Nanomolar concentrations of anabolic androgenic steroids amplify excitotoxic neuronal death in mixed mouse cortical cultures. Brain Research, 65 (2007) 21-29. doi: 10.1016/j.brainres.2007.06.047.
P. Tucci, M. G. Morgese, M. Colaianna, M. Zotti, S. Schiavone, V. Cuomo. Neurochemical consequence of steroid abuse: stanozolol-induced monoaminergic changes. Steroids, 77 (2012) 269-75. doi: 10.1016/j.steroids.2011.12.014.
K. Mizoguchi, A. Ishige, S. Takeda, M. Aburada, T. Tabira. Endogenous glucocorticoids are essential for maintaining prefrontal cortical cognitive function, 24 (2004) 5492-9. doi:10.1523/JNEUROSCI.0086-04.2004.
O. Berton, E. J. Nestler. New approaches to antidepressant drug discovery beyond monoamines. Nat Rev Neurosci, 7 (2006) 137-151. doi:10.1038/nrn1846.
I. Volman, A. K. von Borries, B. H. Bulten, R. J. Verkes, I. Toni, K. Roelofs. Testosterone modulates altered prefrontal control of emotional actions in psychopathic offenders (1, 2, 3). eNeuro, 3 (2016). doi: 10.1523/ENEURO.0107-15.2016.
A. Bjørnebekk, K. B. Walhovd, M. L. Jorstad, P. Due-Tennessen, I. R. Hullstein, A. M Fjell. Structural brain imaging of long-term anabolic-androgenic steroid users and nonusing weightlifters. Biol Psychiatry. 82 (2017). doi:10.1016/j.biopsych.2016.06.017.
D. Struik, P. Fadda, T. Zara, E. Zamberletti, T. Rubino, D. Parolaro, W. Fratta, L. Fattore. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function. Pharmacol Res, 115 (2017) 209–217. doi: 10.1016/j.phrs.2016.11.031.
M. Estrada, A. Varshney, B. E. Ehrlich. Elevated testosterone induces apoptosis in neuronal cells. J. Biol. Chem, 281 (2006) 25492–25501. doi:10.1074/jbc. M603193200.
A. M. Kindlundh, J. Lindblom, L. Bergstrom, F. Nyberg. The anabolic-androgenic steroid nandrolone induces alterations in the density of serotonergic 5HT1B and 5HT2 receptors in the male rat brain. Neuroscience, 119 (2003) 113- 120.
D. Selakovic, J. Joksimovic, I. Zaletel, N. Puskas, M. Matovic, G. Rosic. The opposite effects of nandrolone decanoate and exercise on anxiety levels in rats may involve alterations in hippocampal parvalbumin-positive interneurons. PLoS One. 12 (2017) e0189595. doi: 10.1371/journal.pone.0189595.
B. Ramachandran, S. Ahmed, N. Zafar, C. Dean. Ethanol inhibits LTP in hippocampus CA1 neurons, irrespective of lamina and stimulus strength, through neurosteroidogenesis. Hippocampus, 25 (2015) 106-118. doi: 10.1002/hipo.22356.
F. Ma, D. Liu. 17beta-trenbolone, an anabolic-androgenic steroid as well as an environmental hormone, contributes to neurodegeneration. Toxicol Appl Pharmacol, 282 (2015) 68–76. doi: 10.1016/j.taap.2014.11.007.
E. L. Stevenson, H. K. Caldwell. Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur J Neurosc, 40 (2014) 3294-3301. doi: 10.1111/ejn.12689.
M. Okamoto, Y. Hojo, K. Inoue, T. Matsui, S. Kawato, B. S. McEwen, H. Soya. Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis. PNAS, 109 (2012) 13100-13105. doi: 10.1073/pnas.1210023109.
S. Joukar, R. Vahidi, A Farsinejad, M. Asadi-Shekaari, B. Shahouzehi. Ameliorative effects of endurance exercise with two different intensities on nandrolone decanoate-induced neurodegeneration in rats: involving redox and apoptotic systems. Neurotox Res. 32 (2017) 41-49. doi: 10.1007/s12640-017-9705-1.
R. C. Agis-Balboa, F. Pibiri, M Nelson, G Pinna. Enhanced fear responses in mice treated with anabolic androgenic steroids. Neuroreport, 20 (2009) 617–621. doi: 10.1097/WNR.0b013e32832a2393.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186