Resistance High-Intensity Interval Training (HIIT) Improves Acute Gluconeogenesis from Lactate in Mice
American Journal of Sports Science
Volume 7, Issue 2, June 2019, Pages: 53-59
Received: Apr. 12, 2019; Accepted: May 23, 2019; Published: Jun. 4, 2019
Views 132      Downloads 26
Authors
Gabrielle Yasmin Muller, Department of Physical Education, State University of Maringá, Maringá, Brazil
André Henrique Ernandes de Amo, Department of Biological Sciences, State University of Maringá, Maringá, Brazil
Karen Saar Vedovelli, Specialization in Human Physiology, State University of Maringá, Maringá, Brazil
Isabela Ramos Mariano, Program of Graduate Studies in Physiological Sciences, State University of Maringá, Maringá, Brazil
Giselle Cristina Bueno, Program of Graduate Studies in Physical Education, State University of Maringá, Maringá, Brazil
Julia Pedrosa Furlan, Program of Graduate Studies in Physiological Sciences, State University of Maringá, Maringá, Brazil
Maria Montserrat Diaz Pedrosa, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
Article Tools
Follow on us
Abstract
High-intensity interval training (HIIT) markedly activates muscle anaerobic glycolysis and increases blood lactate. As the liver is a major organ for lactate clearance from the bloodstream, it might improve gluconeogenesis from lactate (NEO-lac) after a period of resistance HIIT. NEO-lac was evaluated by in situ liver perfusion in mice subjected to a resistance HIIT for 4 (T4) or 8 (T8) weeks, or not trained (T0). Perfusion was carried out immediately after an incremental exercise session to test the acute NEO-lac. Muscle strength (expressed as relative maximum load) and blood lactate were higher in T4 than in T0, but NEO-lac did not differ, possibly because of energy discharge of the liver and substrate overload. After 8 weeks of HIIT (T8), both muscle strength and liver NEO-lac increased, but blood lactate did not. The resistance HIIT for 8 weeks modulated liver gluconeogenic efficiency and capacity, which are important mechanisms for the improved clearance of blood lactate.
Keywords
Lactate, Resistance HIIT, Mouse, Liver, Performance
To cite this article
Gabrielle Yasmin Muller, André Henrique Ernandes de Amo, Karen Saar Vedovelli, Isabela Ramos Mariano, Giselle Cristina Bueno, Julia Pedrosa Furlan, Maria Montserrat Diaz Pedrosa, Resistance High-Intensity Interval Training (HIIT) Improves Acute Gluconeogenesis from Lactate in Mice, American Journal of Sports Science. Vol. 7, No. 2, 2019, pp. 53-59. doi: 10.11648/j.ajss.20190702.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
D. G. Hardie. Organismal carbohydrate and lipid homeostasis. Cold Spring Harbor Perspec Biol, vol. 4, n. 5, pp. a006031, 2012.
[2]
J. D. Mul, K. I. Stanford, M. F. Hirshman, L. J. Goodyear. Exercise and regulation of carbohydrate metabolism. Prog Mol Biol Transl Sci, vol. 135, pp. 17–37, 2015.
[3]
G. Van Hall. Lactate kinetics in human tissues at rest and during exercise. Acta Physiologica, vol. 199, n. 4, pp. 499–508, 2010.
[4]
O. Faude, W. Kindermann, T. Meyer. Lactate threshold concepts: How valid are they? Sports Medicine, vol. 39, n. 6, pp. 469–490, 2009.
[5]
P. H. S. Azevedo, A. Garcia, J. M. P. Duarte, G. M. Rissato, V. K. P. Carrara, R. A. Marson. Limiar anaeróbio e bioenergética: uma abordagem didática e integrada. Rev Educ Fis UEM, vol. 20, n. 3, pp. 453–464, 2009.
[6]
W. H. Brito Vieira, M. J. E. Halsberghe, M. L. B. Schwantes, S. E. A. Perez, V. Baldissera, J. Prestes, D. L. Farias, N. A. Parizotto. Increased lactate threshold after five weeks of treadmill aerobic training in rats. Braz J Biol, vol. 74, n. 2, pp. 444–449, 2014.
[7]
J. P. Furlan, A. L. V. Depieri, M. M. D. Pedrosa. Metabolismo do lactato e avaliação de desempenho: dois lados do mesmo processo. Rev Saúde Pesq, vol. 10, n. 1, pp. 171-170, 2017.
[8]
M. L. Goodwin, J. E. Harris, A. Hernandéz, L. B. Gladden. Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol, vol. 1, n. 4, pp. 558–569, 2007.
[9]
E. Trefts, A. S. Williams, D. H. Wasserman. Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci, v. 135, pp. 203–225, 2015.
[10]
M. J. Gibala, S. L. McGee. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev, vol. 36, n. 2, pp. 58Y63, 2008.
[11]
M. J. Gibala, J. P. Little, M. J. MacDonald, J. A. Hawley. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol, vol. 590, n. 5, p. 1077–1084, 2012.
[12]
R. B. Viana, J. P. A. Naves, V. S. Coswig, C. A. B. de Lira, J. Steele, J. P. Fisher, P. Gentil. Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high intensity interval training (HIIT). Br J Sports Med, 2019. doi: 10.1136/bjsports-2018-099928.
[13]
R. B. Batacan, M. J. Duncan, V. J. Dalbo, P. S. Tucker, A. S. Fenning. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med, vol. 51, n. 6, pp. 494–503, 2017.
[14]
K. A. Burgomaster, K. R. Howarth, S. M. Philips, M. Rakobowchuk, M. J. MacDonald, S. L. McGee, M. J. Gibala. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, vol. 586, n. 1, p. 151–160, 2008.
[15]
M. Heydari, J. Freund, S. H. Boutcher. The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes, vol. 2012, n. 12, pp. 1–8, 2012.
[16]
C. W. Emhoff, L. A. Messonnier, M. A. Horning, J. A. Fattor, T. J. Carlson, G. A. Brooks. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol, vol. 114, pp. 297–306, 2013.
[17]
AC. Panveloski-Costa, M. Papoti, R. J. Moreira, P. M. Seraphim. Respostas lactacidêmicas de ratos ao treinamento intermitente de alta intensidade. Rev Bras Med Esporte, vol. 18, pp. 122- 125, 2012.
[18]
V. A. R. Pereira, K. S. Vedovelli, G. Y. Muller, Y. F. Depieri, D. H. C. G. Avelar, A. H. E. de Amo, D. R. Jimenes, J. N. L. Martins, A. C. Silvério, C. R. G. Gomes, V. A. F. Godoi, M. M. D. Pedrosa. Pros and cons of insulin administration on liver glucose metabolism in strength-trained healthy mice. Braz J Med Biol Res, vol. 52, n. 2, e7637, 2019.
[19]
W. K. Neto, W. A. Silva, A. P. Ciena, C. A. Anaruma, E. F. Gama. Vertical climbing for rodent resistance training: a discussion about training parameters. Int J Sports Sci, vol. 06, pp. 36-49, 2016.
[20]
R. F. Garcia, I. R. Mariano, I. C. Stolarz, M. M. D. Pedrosa. Refeeding after caloric restriction reverses altered liver glucose release. Arch Physiol Biochem, 2017. http://dx.doi.org/10.1080/13813455.2017.1370000.
[21]
V. A. F. Godoi, G. B. Mamus, D. G. L. Rezende, M. A. Primo, M. M. D. Pedrosa, J. A. Berti. Changes of liver glucose metabolism in C57BL/6 mice transgenic for human apolipoprotein ApoCIII. J Pharm Pharmacol, vol. 6, pp. 456-465, 2018.
[22]
K. F. Nascimento, R. F. Garcia, V. A. F. G. Gazola, H. M. Souza, S. Obici, R. B. Bazotte. Contribution of hepatic glycogenolysis and gluconeogenesis in the defense against short-term insulin induced hypoglycemia in rats. Life Sci, vol. 82, pp. 1018-1022, 2008.
[23]
G. G. De Araújo, C. A. Gobatto, F. B. Manchado-Gobatto, L. F. M. Teixeira, I. G. M. Dos eis, L. C. Caperuto, M. Papoti, S. Bordin, C. R. Cavaglieri, R. Verlengia. MCT1 and MCT4 kinetic of mRNA expression in different tissues after aerobic exercise at maximal lactate steady state workload. Physiol Res, vol. 64, pp. 513-522, 2015.
[24]
L. Rui. Energy metabolism in the liver. Compr Physiol, vol. 4, n. 1, pp. 177-197, 2014.
[25]
S. Ghafoory, K. Breitkopf-Heinlein, Q. Li, C. Scholl, S. Dooley, S. Wölfl. Zonation of nitrogen and glucose metabolism gene expression upon acute liver damage in mouse. PLoS One, vol. 8, n. 10, e78262, 2013.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186