Antibiogram of Biofield-Treated Shigella boydii: Global Burden of Infections
Science Journal of Clinical Medicine
Volume 4, Issue 6, November 2015, Pages: 121-126
Received: Oct. 8, 2015; Accepted: Oct. 16, 2015; Published: Nov. 16, 2015
Views 3627      Downloads 47
Authors
Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, NV, USA
Alice Branton, Trivedi Global Inc., Henderson, NV, USA
Dahryn Trivedi, Trivedi Global Inc., Henderson, NV, USA
Gopal Nayak, Trivedi Global Inc., Henderson, NV, USA
Sambhu Charan Mondal, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Article Tools
Follow on us
Abstract
Bacillary dysentery and acute gastroenteritis caused by infection of Shigella species are major public health burden in India and its neighboring countries. Emergence of antimicrobial resistance threatens to render current treatments ineffective. The current study was attempted to investigate the effect of biofield treatment on Shigella boydii (S. boydii) with respect of antimicrobial susceptibility assay, biochemical characteristics and biotyping. The American Type Culture Collection (ATCC 9207) strain of S. boydii was used in this experiment. The study was conducted in revived and lyophilized state of S. boydii. Both revived (Group; Gr. II) and lyophilized (Gr. III) strain of S. boydii were subjected to Mr. Trivedi’s biofield treatment. Gr. II was assessed on day 5 and day 10, while Gr. III on day 10 with respect to control (Gr. I). Sensitivity pattern of amoxicillin/k-clavulanate was improved from intermediate (I) to susceptible (S) with correspond to MIC value was also reduced by two folds (16/8 to ≤ 8/4 µg/mL) in both the treated groups as compared to control. The antimicrobial susceptibility of S. boydii showed 15% alteration in Gr. II on day 5, while significant (40%) alteration was found on day 10 as compared to control. The MIC values of antimicrobials for S. boydii also showed 12.50% alteration in Gr. II on day 5 while, significant alteration (59.38%) of minimum inhibitory concentration (MIC) value was found in Gr. II on day 10 as compared to control. It was observed that overall 69.70% biochemical reactions were changed in which 66.67% alteration was found in Gr. II on day 10 with respect to control. Moreover, biotype numbers were changed in all the treated groups without alteration of organism as compared to control. These results suggested that biofield treatment had significant impact on S. boydii in Gr. II on day 10 with respect to antimicrobial susceptibility, MIC and biochemical reactions pattern.
Keywords
Shigella boydii, Antimicrobial Sensitivity, Biofield Treatment, Biochemical Reaction, Biotype, Bacillary Dysentery, Shigellosis, Acute Gastroenteritis
To cite this article
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana, Antibiogram of Biofield-Treated Shigella boydii: Global Burden of Infections, Science Journal of Clinical Medicine. Vol. 4, No. 6, 2015, pp. 121-126. doi: 10.11648/j.sjcm.20150406.12
Copyright
Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Yang F, Yang J, Zhang X, Chen L, Jiang Y, et al. (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nuc Acids Res 33: 6445-6458.
[2]
Woodward DL, Clark CG, Caldeira RA, Ahmed R, Soule G, et al. (2005) Identification and characterization of Shigella boydii 20 serovar nov., a new and emerging Shigella serotype. J Med Microbiol 54: 741-748.
[3]
Dutta S, Jain P, Nandy S, Matsushita S, Yoshida S (2014) Molecular characterization of serologically atypical provisional serovars of Shigella isolates from Kolkata, India. J Med Microbiol 63: 1696-1703.
[4]
Advisory Committee on Dangerous Pathogens (2013). The Approved List of Biological Agents. Health and Safety Executive. HSE Books, Sudbury, Suffolk.
[5]
Rowe B (1984) Genus II Shigella. In: Krieg NR, Holt JG, editors. Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore.
[6]
Bardhan P, Faruque AS, Naheed A, Sack DA (2010) Decrease in shigellosis-related deaths without Shigella spp.-specific interventions, Asia. Emerg Infect Dis 16: 1718-1723.
[7]
CDC (2013) Health Information for International Travel. Infectious diseases related to travel. (1stedn), Oxford University Press.
[8]
Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
[9]
Burr HS (1957) Bibliography of Harold Saxton Burr. Yale J Biol Med 30: 163-167.
[10]
Hammerschlag R, Jain S, Baldwin AL, Gronowicz G, Lutgendorf SK, et al. (2012) Biofield research: A roundtable discussion of scientific and methodological issues. J Altern Complement Med 18: 1081-1086.
[11]
Movaffaghi Z, Farsi M (2009) Biofield therapies: Biophysical basis and biological regulations? Complement Ther Clin Pract 15: 35-37.
[12]
Rivera-Ruiz M, Cajavilca C, Varon J (2008) Einthoven's String Galvanometer: The first electrocardiograph. Tex Heart Inst J 35: 174-178.
[13]
Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Met Powder Rep 63: 22-28, 31.
[14]
Dabhade VV, Tallapragada RR, Trivedi MK (2009) Effect of external energy on atomic, crystalline and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479.
[15]
Trivedi MK, Tallapragada RM (2009) Effect of super consciousness external energy on atomic, crystalline and powder characteristics of carbon allotrope powders. Mater Res Innov 13: 473-480.
[16]
Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35: 22-29.
[17]
Lenssen AW (2013) Biofield and fungicide seed treatment influences on soybean productivity, seed quality and weed community. Agricultural Journal 83: 138-143.
[18]
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222.
[19]
Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.
[20]
Mahendra KT, Shrikant P, Harish S, Mayank G, Jana S (2015) An effect of biofield treatment on Multidrug-resistant Burkholderia cepacia: A multihost pathogen. J Trop Dis 3: 167.
[21]
Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth.). Biotechnology 11: 154-162.
[22]
Nayak G, Altekar N (2015) Effect of biofield treatment on plant growth and adaptation. J Environ Health Sci 1: 1-9.
[23]
Fader RC, Weaver E, Fossett R, Toyras M, Vanderlaan J, et al. (2013) Multilaboratory study of the biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels. J Clin Microbiol 51: 1548-1554.
[24]
Rahman M, Shoma S, Rashid H, El Arifeen S, Baqui AH, et al. (2007) Increasing spectrum in antimicrobial resistance of Shigella isolates in Bangladesh: Resistance to azithromycin and ceftriaxone and decreased susceptibility to ciprofloxacin. J Health Popul Nutr 25: 158-167.
[25]
Bhattacharya D, Sugunan AP, Bhattacharjee H, Thamizhmani R, Sayi DS, et al. (2012) Antimicrobial resistance in Shigella - rapid increase and widening of spectrum in Andaman Islands, India. Indian J Med Res 135: 365-370.
[26]
Wilson G, Easow JM, Mukhopadhyay C, Shivananda PG (2006) Isolation and antimicrobial susceptibility of Shigella from patients with acute gastroenteritis in western Nepal. Indian J Med Res 123: 145-150.
[27]
Gaurav A, Singh SP, Gill JPS, Kumar R, Kumar D (2013) Isolation and identification of Shigella spp. from human fecal samples collected from Pantnagar, India. Vet World 6: 376-379.
[28]
Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, et al. (2005) Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infect Dis 5: 481-493.
[29]
Lindstrom E, Mild KH, Lundgren E (1998) Analysis of the T cell activation signaling pathway during ELF magnetic field exposure, p56lck and [Ca2+]i-measurements. Bioeletrochem Bioenerg 46: 129-137.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931