Extended P21-Based Benchmarking
International Journal of Energy and Power Engineering
Volume 5, Issue 1-1, February 2016, Pages: 1-11
Received: Aug. 24, 2015; Accepted: Aug. 25, 2015; Published: Sep. 28, 2015
Views 3302      Downloads 73
Authors
Zhiguang Cheng, Institute of Power Transmission and Transformation Technology, Baobian Electric Co., Ltd, Baoding, China
Behzad Forghani, Infolytica Corporation, Place du Parc, Montreal, Canada
Tao Liu, Institute of Power Transmission and Transformation Technology, Baobian Electric Co., Ltd, Baoding, China
Yana Fan, Institute of Power Transmission and Transformation Technology, Baobian Electric Co., Ltd, Baoding, China
Lanrong Liu, Institute of Power Transmission and Transformation Technology, Baobian Electric Co., Ltd, Baoding, China
Article Tools
Follow on us
Abstract
This paper highlights two important aspects of the electromagnetic field modeling and simulation when used for industrial applications, namely the application based benchmarking activities and the magnetic material modeling. It emphasizes the relationship between the two, and briefly reviews the recent progress in extending the TEAM (Testing Electromagnetic Analysis Methods) Problem 21 Family (P21) and the related modeling results, and proposes a new benchmarking project which includes the upgraded benchmark models that can handle extreme excitations, i.e. current sources with a DC bias, as well as multiple harmonics.
Keywords
Extended Benchmarking, Extreme Excitation, Finite Element, Industrial Application, Magnetic Flux, Magnetic Loss, Problem 21 Family (P21), Working Magnetic Property Modeling
To cite this article
Zhiguang Cheng, Behzad Forghani, Tao Liu, Yana Fan, Lanrong Liu, Extended P21-Based Benchmarking, International Journal of Energy and Power Engineering. Special Issue: Numerical Analysis, Material Modeling and Validation for Magnetic Losses in Electromagnetic Devices. Vol. 5, No. 1-1, 2016, pp. 1-11. doi: 10.11648/j.ijepe.s.2016050101.11
References
[1]
TEAM Benchmark Problems. [Online]. available: www.compumag.org/TEAM.
[2]
IEEE Std 1597.1TM-2008: IEEE Standard for validation of computational electromagnetics computer modeling and simulations.
[3]
Z. Cheng, Q. Hu, S. Gao, Z. Liu, C. Ye, M. Wu, J. Wang, and Z.Hu, “An engineering-oriented loss model (Problem 21),” Proc. of the international TEAM Workshop, Miami, pp.137-143, 1993.
[4]
Z. Cheng, N. Takahashi, B. Forghani, X. Wang, et al, “Extended progress in TEAM Problem 21 family,” COMPEL, 33, 1/2, pp.234-244, 2014.
[5]
Z. Cheng, N. Takahashi, B. Forghani, and Y. Wang, “Engineering-oriented benchmarking and application-based magnetic material modeling in transformer research“, Presented at the International Colloquium Transformer Research and Asset Management(invited), Dubrovnik, Croatia, May 16 – 18, 2012.
[6]
Z. Cheng, Q. Hu, N. Takahashi, and B. Forghani, “Stray-field loss modeling in transformers,” International Colloquium Transformer Research and Asset Management, Cavtat, Croatia, Nov.12-14, 2009.
[7]
N. Takahashi, T. Sakura and Z. Cheng, “Nonlinear analysis of eddy current and hysteresis losses of 3-D stray field loss model (Problem 21),” IEEE Trans. Magn., vol.37, no.5, pp.3672-3675, 2001.
[8]
Z. Cheng, R. Hao, N. Takahashi, Q. Hu, and C. Fan, “Engineering-oriented benchmarking of Problem 21 family and experimental verification,” IEEE Trans. Magn., vol. 40, no.2, pp.1394-1397, 2004.
[9]
Z. Cheng, N. Takahashi, S. Yang, T. Asano, Q. Hu, S. Gao, X. Ren, H. Yang, L. Liu, and L. Gou, “Loss spectrum and electromagnetic behavior of Problem 21 family”, IEEE Trans. Magn., vol.42, no.4, pp.1467-1470, 2006.
[10]
Z. Cheng, N. Takahashi, S. Yang, C. Fan, M. Guo, L. Liu, J. Zhang, and S. Gao, “Eddy current and loss analysis of multi-steel configuration and validation,” IEEE Trans. Magn., vol.43, no.4, pp.1737-1740, 2007.
[11]
Z. Cheng, N. Takahashi, B. Forghani, G. Gilbert, J. Zhang, L. Liu, Y. Fan, X. Zhang, Y. Du, J. Wang, and C. Jiao, “Analysis and measurements of iron loss and flux inside silicon steel laminations,” IEEE Trans. Magn.,vol.45, no.3, pp.1222-1225, 2009.
[12]
Z. Cheng, N. Takahashi, B. Forghani, et al, “Effect of excitation patterns on both iron loss and flux in solid and laminated steel configurations,” IEEE Trans. Magn., vol.46, no.8, pp.3185-3188, 2010.
[13]
Z. Cheng, N. Takahashi, B. Forghani, et al, “Effect of variation of B-H properties on loss and flux inside silicon steel lamination,” IEEE Trans. Magn., vol.47, no.5, pp.1346-1349, 2011.
[14]
Z. Cheng, N. Takahashi, B. Forghani, L. Liu, Y. Fan, T. Liu, J. Zhang, and X. Wang, “3-D finite element modeling and validation of power frequency multi-shielding effect,” IEEE Trans. Magn., vol.48, no.2, pp.243-246, 2012.
[15]
Z. Cheng, N. Takahashi, B. Forghani, et al, “Electromagnetic and Thermal Field Modeling and Application in Electrical Engineering,” Science Press (in Chinese), ISBN 978-7-03-023561-9, Beijing, 2009.
[16]
A. J. Moses, “Characterisation and performance of electrical steels for power transformers operating under extremes of magnetisation conditions,” International Colloquium Transformer Research and Asset Management, Cavtat, Croatia, Nov.12-14, 2009.
[17]
M. Enokizono, H. Shimoji, A. Ikariga, et al, “Vector magnetic characteristic analysis of electrical machines,” IEEE Trans. Magn., vol.41, no.5, pp.2032-2035, 2005.
[18]
K. Fujiwara, T. Adachi, and N. Takahashi, “A proposal of finite-element analysis considering two-dimensional magnetic properties,” IEEE Trans. Magn., vol.38, no.2, pp.889-892, 2002.
[19]
H. Nishimoto, M. Nakano. K. Fujiwara, and N. Takahashi, “Effect of frequency on magnetic properties,” Papers of Technical Meeting on Magnetics, IEE Japan, MAG-98-56, 1998 (in Japanese).
[20]
J. Zhu, J. J. Zhong, Z. W. lin, et al, “Measurement of magnetic properties under 3-D magnetic excitations,” IEEE Trans. Magn., vol.39, no.5, pp. 3429-3431, 2003.
[21]
J. Turowski, M. Turowski, and M. Kopec, “Method of three-dimensional network solution of leakage field of three-phase transformers,” IEEE Trans. Magn., vol. 26, no. 5, pp. 2911-2919, 1990.
[22]
N. Takahashi, S. Nakazaki, and D. Miyagi, “Optimization of electromagnetic and magnetic shielding using ON/OFF method,” IEEE Trans. Magn., vol.46, no.8, pp.3153-3156, 2010.
[23]
M. Horii, N. Takahashi, and J. Takehara, “3-D optimization of design variables in x-, y-, and z-directions of transformer tank shield model,” IEEE Trans. Magn., vol.37, no.5, pp.3631-3634, 2001.
[24]
J. Turowski, X. M. Lopez-Fernandez, A. Soto, and D. Souto, “Stray losses control in core- and shell-type transformers,” Advanced Research Workshop on Transformers, Baiona, Spain, 29-31 Oct., 2007.
[25]
K. V. Namjosji and P. P. Biringer, “Efficiency of eddy current shielding of structural steel surrounding large currents: a circuit approach,” IEEE Trans. Magn., vol.27, no.6, pp.5417-5419, 1991.
[26]
R. Tang, Y. Li, F. Lin, and L. Tian, “Resultant magnetic fields due to both windings and heavy current leads in large power transformers,” IEEE Trans. Magn., vol.32, no.3, pp.1641-1644, 1996.
[27]
R. M. D. Vecchio, “Eddy current losses in a conducting plate due to a collection of bus bars carrying currents of different magnitudes and phases,” IEEE Trans. Magn., vol.39, no.1, pp.549-552, 2003.
[28]
Z. Cheng, B. Forghani, Y. Liu, Y. Fan, T. Liu, and Z. Zhao, "Magnetic Loss inside Solid and Laminated Components under Extreme Excitations," to be published in the Special Issue (no.164022) of International Journal of Energy and Power Engineering.
[29]
O. Biro and K. Preis, “Finite element analysis of 3-D eddy currents,” IEEE Trans. Magn., vol.26, no.2, pp.418-423, 1990.
[30]
O. Biro, K. Preis, and K. R. Richter, “Various FEM formulation for the calculation of transient 3D eddy currents in nonlinear media,” IEEE Trans. Magn., vol.31, no.3, pp.1307-1312, 1995.
[31]
O. Biro, K. Preis, U. Baumgartner, and G. Leber, “Numerical modeling of transformer losses,” presented at International Colloquium Transformer Research and Asset Management, Cavtat, Croatia, Nov.12-14, 2009.
[32]
J. P. Webb and B. Forghani, “T-Omega method using hierarchal edge elements,” IEE Proc.-Sci.Meas. Technol., vol.142, no.2, 1995, pp.133-141.
[33]
Z. Cheng, S. Gao, and L. Li, “Eddy Current Analysis and Validation in Electrical Engineering”, Higher Education Press (in Chinese), ISBN 7-04-009888-1, Beijing, 2001.
[34]
H. Kaimori, A. Kameari, and K. Fujiwara, “FEM computation of magnetic field and iron loss in laminated iron core using homogenization method,” IEEE Trans. Magn., vol.43, no.4, pp.1405-1408, 2007.
[35]
K. Preis, O. Biro, and I. Ticar, “FEM analysis of eddy current losses in nonlinear laminated iron cores,” IEEE Trans. Magn., vol.41, no.5, pp.1412-1415, 2005.
[36]
T. Kohsaka, N. Takahashi, S. Nogawa, and M. Kuwata, “Analysis of Magnetic characteristics of three-phase reactor model of grain-oriented silicon steel,” IEEE Trans. Magn., vol.36, no.4, pp.1894-1897, 2000.
[37]
H. Igarashi, K. Watanabe, and A. Kost, “A reduced model for finite element analysis of steel laminations,” IEEE Trans. Magn., vol.42, no.4, pp.739-742, 2006.
[38]
W. Zheng, and Z. Cheng, “Efficient finite element simulation for GO silicon steel laminations using inner-constrained laminar separation,” IEEE Trans. Magn., vol.48, no.8, pp.2277-2283, 2012.
[39]
P. Marketos, S. Zurek, and A. Moses, “A method for defining the mean path length of Epstein,” IEEE Trans. Magn., vol.43, no.6, pp.2755-2757, 2007.
[40]
Z. Cheng, N. Takahashi, B. Forghani, A. Moses, P. Anderson, Y. Fan, T. Liu, X. Wang, Z. Zhao, and L. Liu, “Modeling of magnetic properties of GO electrical steel based on Epstein combination and loss data weighted processing,” IEEE Trans. Magn., vol.50, no.1, 6300209, 2014.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186