Journal of Water Resources and Ocean Science

| Peer-Reviewed |

Pesticide Contamination Monitored by Passive Sampling in Environmental Water of Japanese Coral Island

Received: 01 March 2015    Accepted: 16 March 2015    Published: 24 March 2015
Views:       Downloads:

Share This Article

Abstract

The pesticide contaminations in the water of rivers and an estuary of a Japanese coral island with unique ecosystems in enclosed moats and on fringing reefs were analyzed by means of passive sampling. Samplers were deployed in the rivers and estuary for each 2 weeks of August through December of 2013 and of February of 2014. One to 12 kinds of pesticides were detected from all the samplers at the river sites with the maximum amount of 260 ng day-1 per sampler for EPN. The detected compounds and their amounts fluctuated widely at each sampling occasion. The analyses of the grab water samples detected much less compounds in comparison with the passive samples from the same sites. The time weighted average (TWA) concentrations of these pesticides are estimated as several micrograms per litter in the river waters. Further, 0.1 ng day-1 of procymidone was also detected from a sampler in the middle of the estuary where the river water is largely diluted with seawater. This amount of pesticide corresponds to a TWA concentration in the estuary water with the order of several ng L-1. Considerable discharges of chemicals into coastal water by intensive agricultural practices such as flower cultivations on the island is concerned.

DOI 10.11648/j.wros.20150402.12
Published in Journal of Water Resources and Ocean Science (Volume 4, Issue 2, April 2015)
Page(s) 39-43
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Coastal Environment, Coral Reef, Agriculture, Pesticide, Water Pollution, Passive Sampling

References
[1] C. M. Roberts, C. J. McClean, J. E. N. Veron, J. P. Hawkins, G. R. Allen, D. E. McAllister, C. G. Mittermeier, F. W. Schueler, M. Spalding, F. Wells, C. Vynne and T. B. Werner, Marine biodiversity hotspots and conservation priorities for tropical reefs, Science, 295(5558) , 2002, 1280-1284.
[2] Y. Tashiro and T. Taniyama, Pesticide contamination in groundwater on Okinoerabu Island, an intensive agricultural district in Japan (in Japanese), Jpn. J. Crop. Sci., 65, 1996, 77-86.
[3] S. T. Imo, M. A. Sheikh, K. Sawano, H. Fujimura and T. Oomori, Distribution and possible impacts of toxic organic pollutants on coral reef ecosystems around Okinawa Island, Japan, Pacific Science, 62(3), 2008, 317-326.
[4] Y. Kitada, H. Kawahata, A. Suzuki and T. Oomori, Distribution of pesticides and bisphenol A in sediments collected from rivers adjacent to coral reefs, Chemosphere, 71, 2008, 2082-2090.
[5] M.A. Sheikh, T. Oomori, H. Fujimura, T. Higuchi, T. Imo, A. Akamatsu, T. Miyagi, T. Yokota and S. Yasumura, Distribution and potential effects of novel antifouling herbicide diuron on coral reefs, in Herbicides - Environmental Impact Studies and Management Approaches, Dr. Ruben Alvarez-Fernandez (Ed.), ISBN: 978-953-307-892-2, 2012, InTech,
[6] Y. Tashiro and Y. Kameda, Concentration of organic sun-blocking agents in seawater of beaches and coral reefs of Okinawa Island, Japan, Marine Pollution Bulletin, 77, 2013, 333–340.
[7] J. Kingston, R. Greenwood, G. Mills, G. Morrison and L. Pesson, Development of a novel passive sampling system for the time averaged measurement of a range of organic pollutants in aquatic environments, Journal of Environmental Monitoring, 2, 2000, 487–495.
[8] R. B. Schäfer, A. Paschke, B. Vrana, R. Mueller and M. Liess, Performance of the Chemcatchers passive sampler when used to monitor 10 polar and semi-polar pesticides in 16 Central European streams, and comparison with two other sampling methods, Water Research, 42, 2008, 2707 – 2717.
[9] M. Shaw, M. J. Furnas, K. Fabricius, D. Haynes, S. Carter, G. Eaglesham and J. F. Mueller, Monitoring pesticides in the Great Barrier Reef, Marine Pollution Bulletin, 60, 2010, 113–122.
[10] F. Sánchez-Bayo, R. V. Hyne, G. Kibria and P. Doble, Calibration and field application of Chemcatcher passive samplers for detecting amitrole residues in agricultural drain waters, Bull. Environ. Contam. Toxicol., 90, 2013, 635–639.
[11] F. Sánchez-Bayo and R. V. Hyne, Detection and analysis of neonicotinoids in river waters – Development of a passive sampler for three commonly used insecticides, Chemosphere, 99, 2014, 143–151.
[12] Japan Plant Protection Association, “Noyaku Yoran (Pesticide Handbook) 2013” (in Japanese), 2013, JPPA.
[13] Japanese Ministry of the Environment, “Interim manual for investigations on endocrine disrupting compounds” (in Japanese), 1998, JME.
[14] E. L. M. Vermeirssen, C. Dietschweiler, B. I. Escher, J. van der Voet and J. Hollender, Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler, Anal. Bioanal. Chem., 405, 2013, 5225–5236.
[15] A. T. K. Tran, R. V. Hyne and P Doble, Calibration of a passive sampling device for time-integrated sampling of hydrophilic herbicides in aquatic environments, Environ. Toxicol. Chem., 26, 2007, 435-443.
[16] R. Gunold, R. B. Schäfer, A. Paschke, G. Schüürmann and M. Liess, Calibration of the Chemcatcher passive sampler for monitoring selected polar and semi-polar pesticides in surface water, Environmental Pollution, 155, 2008, 52-60.
[17] M. Shaw and J. F. Mueller, Preliminary evaluation of the occurrence of herbicides and PAHs in the Wet Tropics region of the Great Barrier Reef, Australia, using passive samplers, Marine Pollution Bulletin, 51, 2005, 876–881.
Author Information
  • Faculty of International studies, Meio University, Nago, Okinawa, Japan

  • Faculty of Engineering, Chiba Institute of Technology, Narashino, Chiba, Japan

Cite This Article
  • APA Style

    Yutaka Tashiro, Yutaka Kameda. (2015). Pesticide Contamination Monitored by Passive Sampling in Environmental Water of Japanese Coral Island. Journal of Water Resources and Ocean Science, 4(2), 39-43. https://doi.org/10.11648/j.wros.20150402.12

    Copy | Download

    ACS Style

    Yutaka Tashiro; Yutaka Kameda. Pesticide Contamination Monitored by Passive Sampling in Environmental Water of Japanese Coral Island. J. Water Resour. Ocean Sci. 2015, 4(2), 39-43. doi: 10.11648/j.wros.20150402.12

    Copy | Download

    AMA Style

    Yutaka Tashiro, Yutaka Kameda. Pesticide Contamination Monitored by Passive Sampling in Environmental Water of Japanese Coral Island. J Water Resour Ocean Sci. 2015;4(2):39-43. doi: 10.11648/j.wros.20150402.12

    Copy | Download

  • @article{10.11648/j.wros.20150402.12,
      author = {Yutaka Tashiro and Yutaka Kameda},
      title = {Pesticide Contamination Monitored by Passive Sampling in Environmental Water of Japanese Coral Island},
      journal = {Journal of Water Resources and Ocean Science},
      volume = {4},
      number = {2},
      pages = {39-43},
      doi = {10.11648/j.wros.20150402.12},
      url = {https://doi.org/10.11648/j.wros.20150402.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.wros.20150402.12},
      abstract = {The pesticide contaminations in the water of rivers and an estuary of a Japanese coral island with unique ecosystems in enclosed moats and on fringing reefs were analyzed by means of passive sampling. Samplers were deployed in the rivers and estuary for each 2 weeks of August through December of 2013 and of February of 2014. One to 12 kinds of pesticides were detected from all the samplers at the river sites with the maximum amount of 260 ng day-1 per sampler for EPN. The detected compounds and their amounts fluctuated widely at each sampling occasion. The analyses of the grab water samples detected much less compounds in comparison with the passive samples from the same sites. The time weighted average (TWA) concentrations of these pesticides are estimated as several micrograms per litter in the river waters. Further, 0.1 ng day-1 of procymidone was also detected from a sampler in the middle of the estuary where the river water is largely diluted with seawater. This amount of pesticide corresponds to a TWA concentration in the estuary water with the order of several ng L-1. Considerable discharges of chemicals into coastal water by intensive agricultural practices such as flower cultivations on the island is concerned.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Pesticide Contamination Monitored by Passive Sampling in Environmental Water of Japanese Coral Island
    AU  - Yutaka Tashiro
    AU  - Yutaka Kameda
    Y1  - 2015/03/24
    PY  - 2015
    N1  - https://doi.org/10.11648/j.wros.20150402.12
    DO  - 10.11648/j.wros.20150402.12
    T2  - Journal of Water Resources and Ocean Science
    JF  - Journal of Water Resources and Ocean Science
    JO  - Journal of Water Resources and Ocean Science
    SP  - 39
    EP  - 43
    PB  - Science Publishing Group
    SN  - 2328-7993
    UR  - https://doi.org/10.11648/j.wros.20150402.12
    AB  - The pesticide contaminations in the water of rivers and an estuary of a Japanese coral island with unique ecosystems in enclosed moats and on fringing reefs were analyzed by means of passive sampling. Samplers were deployed in the rivers and estuary for each 2 weeks of August through December of 2013 and of February of 2014. One to 12 kinds of pesticides were detected from all the samplers at the river sites with the maximum amount of 260 ng day-1 per sampler for EPN. The detected compounds and their amounts fluctuated widely at each sampling occasion. The analyses of the grab water samples detected much less compounds in comparison with the passive samples from the same sites. The time weighted average (TWA) concentrations of these pesticides are estimated as several micrograms per litter in the river waters. Further, 0.1 ng day-1 of procymidone was also detected from a sampler in the middle of the estuary where the river water is largely diluted with seawater. This amount of pesticide corresponds to a TWA concentration in the estuary water with the order of several ng L-1. Considerable discharges of chemicals into coastal water by intensive agricultural practices such as flower cultivations on the island is concerned.
    VL  - 4
    IS  - 2
    ER  - 

    Copy | Download

  • Sections