Preparation of Charcoal Pellets from Eucalyptus Wood with Different Binders
Journal of Energy and Natural Resources
Volume 4, Issue 2, April 2015, Pages: 34-39
Received: Apr. 6, 2015; Accepted: Apr. 22, 2015; Published: May 5, 2015
Views 5011      Downloads 182
Authors
Alejandro Amaya, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Mariana Corengia, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Andrés Cuña, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Jorge De Vivo, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Andrés Sarachik, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Nestor Tancredi, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Article Tools
Follow on us
Abstract
At present, there is great interest in using biomass as an alternative energetic source, as it is renewable and environmentally friendly. In the case of solid fuels, biomass has low energetic density, although it can be increased by charring and pelletizing. These methods also allow the improvement of physical properties, such as hydrophobicity and resistance to microbiological attack. In this work, the agglomeration of charcoal dust produced from sawmill waste with three different binders (wood tar, molasses and starch) was studied. The procedure included agglomeration and curing by heating in air atmosphere. The prepared charcoal pellets showed appropriate mechanical resistance, higher heating value than the original wood residues and higher energetic density than charcoal. Molasses and tar used as binders in the preparation of fuel pellets allow energy densification and an adequate durability of the products.
Keywords
Charcoal, Pellet, Binders, Eucalyptus Wood, Renewable Energy
To cite this article
Alejandro Amaya, Mariana Corengia, Andrés Cuña, Jorge De Vivo, Andrés Sarachik, Nestor Tancredi, Preparation of Charcoal Pellets from Eucalyptus Wood with Different Binders, Journal of Energy and Natural Resources. Vol. 4, No. 2, 2015, pp. 34-39. doi: 10.11648/j.jenr.20150402.12
References
[1]
I. Hannula. “Co-production of synthetic fuels and district heat from biomass residues, carbon dioxide and electricity: Performance and cost analysis. Biomass and Bioenerg., vol. 74, pp. 26-46, March 2015.
[2]
J. Bisquert. “Materials for production and storage of renewable energy”. J. Phys. Chem. Lett., vol 2, pp. 270-271, February 2011.
[3]
P. Moriarty and D. Honnery. “The transition to renewable energy: make haste slowly”. Environ. Sci. Technol., vol. 45, pp. 2527-2528, March 2011.
[4]
N. Kaliyan and V. Morey. “Factors affecting strength and durability of densified biomass products”. Biomass Bioenerg., vol. 33, pp. 337-359, March 2009.
[5]
Z. Miao, T. Grift, A. Hansen, and K. C. Ting. “Energy requirement for lignocellulosic feedstock densifications in relation to particle physical properties, preheating, and binding agents”. Energ. Fuel vol. 27, pp. 588-595, January 2013.
[6]
R. Wakeling and P. Morris. “Wood deterioration: Ground contact hazards”. ACS Sym. Ser., vol. 1158, pp. 131-146, June 2014.
[7]
M. Barontini, S. Crognale, A. Scarfone, P. Gallo, F. Gallucci, M.Petruccioli, L. Pesciaroli and L. Pari “Airborne fungi in biofuel wood chip storage sites”. Int. Biodeter. Biodegr., vol. 90, pp. 17-22, May 2014.
[8]
M. Overbeck and M. Schmidt. “Modelling infestation risk of Norway spruce by Ips typographus (L.) in the Lower Saxon Harz Mountains (Germany)”. Forest Ecol. Manag., vol. 266, pp. 115-125, February 2012.
[9]
I. Niedziółka, M. Szpryngiel, M. Kachel-Jakubowska, A. Kraszkiewicz, K. Zawiślak, P. Sobczak and R. Nadulski. “Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass” Renew. Energ., vol. 76, pp. 312-317, April 2015.
[10]
V. Bustamante-García, A. Carrillo-Parra, H. González-Rodríguez, R. Ramírez-Lozano, J. J. Corral-Rivas, and F. Garza-Ocañas. “Evaluation of a charcoal production process from forest residues of Quercus sideroxyla and Humb., & Bonpl. in a Brazilian beehive kiln”. Ind. Crop Prod., vol. 42, pp. 169-174, March 2013.
[11]
M. Horio, A. Suri, J. Asahara, S. Sagawa and C. Aida. “Development of biomass charcoal combustion heater for household utilization”. Ind. Eng. Chem. Res., vol. 48, pp. 361-372, January 2009.
[12]
D. Medic, M. Darr, A. Shah and S. Rahn. “Effect of torrefaction on water vapor adsorption properties and resistance to microbial degradation of corn stover”. Energ. Fuel, vol. 26, pp. 2386-2393, April 2012.
[13]
R. K. Eckhoff, Dust Explosions in the Process Industries, 3rd ed. Boston: Gulf Professional Publishing/Elsevier, 2003, pp. 256-263.
[14]
H. Li, L. Jiang, C. Li, J. Liang, X. Yuan, Z. Xiao, Z. Xiao and H. Wang “Co-pelletization of sewage sludge and biomass: The energy input and properties of pellets” Fuel Process. Technol.,vol.132, pp. 55-61, April 2015.
[15]
F. Fonseca, C. A. Luengo, J. A. Suárez and P. A. Beatón. “Wood briquette torrefaction”. Energ Sust. Dev., vol. 9, pp. 19-22, March 2005.
[16]
M. Katzer, S. Pirl, S. Esser, J. Kopietz, T. Rickmann, J. Behnisch and C. J. Klasen. “Residence time distribution in granulation drums, on the example of industrial carbon black”. Chem. Eng. Technol., vol. 27, pp. 578-582, May 2004.
[17]
T. H. Mwampamba, M. Owen and M. Pigaht. “Opportunities, challenges and way forward for the charcoal briquette industry in Sub-Saharan Africa”. Energ Sust. Dev., vol 17 pp. 158–170, April 2013.
[18]
S. R. Teixeira, A. F. V. Pena and A. G. Migue. “Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel”. Waste Manage., vol. 30, pp. 804-807, May 2010.
[19]
A. Amaya, N. Medero, N. Tancredi, H. Silva, F. Sardella and C. Deiana. “Activated carbon briquettes from biomass materials”. Bioresource Technol., vol. 98, pp. 1635-1641, May 2007.
[20]
A. Amaya, J. Píriz, N. Tancredi and T. Cordero. “Activated carbon pellets from eucalyptus char and tar TG studies”. J. Therm. Anal. Calorim., vol. 89, pp. 987-991, September 2007.
[21]
N. Kaliyan and V. Morey. “Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass”. Bioresource Technol., vol. 101, pp. 1082-1090, February 2010.
[22]
A. Kumar, N. Kumar, P. Baredar and A. Shukla. “A review on biomass energy resources, potential, conversion and policy in India”. Renew. Sust. Energy Reviews, vol. 45, pp. 530–539, February 2015.
[23]
P. K. Halder, N. Paul and M.R.A. Beg. “Assessment of biomass energy resources and related technologies practice in Bangladesh”. Renew. Sust. Energy Reviews, vol. 39, pp. 444–460, August 2014.
[24]
O. A. Sotannde, A. O. Oluyege and G. B. Abah. “Physical and combustion properties of charcoal briquettes from neem wood residues”. Int. Agrophys., vol. 24, pp. 189-194, June 2010.
[25]
DINACYT. “El enorme potencial de la madera uruguaya”. Noticias DINACYT Nr. 253, March 2005.
[26]
C. Faroppa, Evaluación de la disponibilidad de residuos o subproductos de biomasa a nivel nacional. Montevideo: Ministerio de Industria, Energía y Minería, Dirección Nacional de Energía y Tecnología Nuclear; ONUDI; Uruguay, 2010, pp. 5-18.
[27]
N. Tancredi, A. Cuña, J. P., Luizzi, M. Corengia, A. Sarachik, A. Amaya.”Obtention of charcoal from eucalyptus wood in a steel pilot scale kiln”. In Charcoal: Chemical Properties, Production Methods and Applications. New York: Nova Science Inc. Publishers, pp 61-74, 2013.
[28]
E. Purlis. “Browning development in bakery products – A review”. J. Food Eng., vol. 99, pp. 239–249, August 2010.
[29]
K. J. Zhang and Y. Guo “Physical properties of solid fuel briquettes made from Caragana korshinskii”. Powder Technol., vol. 256, pp. 293-299, April 2014
[30]
M. van Blijderveen, E. A. Bramer and G. Brem. “Modelling spontaneous ignition of wood, char and RDF in a lab-scale packed bed”. Fuel, vol. 108, pp. 190–196, June 2013.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186