Theoretical and Experimental Treatment of Gaseous Cementation of Iron
American Journal of Energy Engineering
Volume 1, Issue 2, May 2013, Pages: 30-36
Received: Apr. 10, 2013; Published: Jun. 10, 2013
Views 2547      Downloads 87
Authors
Tayeb CHIHI, Laboratory for Elaboration of New Materials and Characterization (LENMC), University of Setif 1, 19000, Algeria
FATMI Messaoud, Research Unit on Emerging Materials (RUEM), University of Setif 1, 19000, Algeria ; Laboratory of Physics and Mechanics of Metallic Materials (LP3M), University of Setif 1, 19000, Algeria
Article Tools
PDF
Follow on us
Abstract
Mathematical model is developed for cementation of iron taking into account the diffusion of atomic carbon C through the γ phase. Analytical solutions are obtained assuming constant diffusion coefficients, firstly the analytical method proposed that test to control the process of gaseous cementation, controlled the technological parameters of the cementation such: time (t), temperature (T), initial concentration (Co), potential carbon or atmospheric concentration (Catm), and speed of the gas flow (xw), secondly to accelerate the process of the gaseous cementation. Finally the results are quantitatively compared with those obtained experimentally taking into account the micro hardness profile. In addition, it is shown that the layer cemented produced during cementation of iron can be predicted by the numerical simulation.
Keywords
Gaseous Cementation, Iron, Ageing Time, Phase Diagram FeC
To cite this article
Tayeb CHIHI, FATMI Messaoud, Theoretical and Experimental Treatment of Gaseous Cementation of Iron, American Journal of Energy Engineering. Vol. 1, No. 2, 2013, pp. 30-36. doi: 10.11648/j.ajee.20130102.12
References
[1]
Chaussin. Hilly: Metallurgy, Volume (1), Metallic Alloys, DUNOD, BET, 1967.
[2]
O. REY, P. JACQOT, Kolsterising: hardening of austenitic stinless steel, Surface engineering, vol. 18, n°6, pp 412-414, December 2002.
[3]
P. DYMOND, Kolsterising, Improving Austenitic stainless steel, ASM Heat Treat 2001, Indianapolis, 15-17 September 2003.
[4]
Martin. P, J. Alvalez, Fernandez Gonzalez. B. J, Ruis Fernandez. J, Bello Berbegal. J: Cinetica de incorporation de carbone en el acera a partir de las atmosphéras endotermicas, rev: metal. Madrid. 1984, 20.
[5]
T. Turpin, J. DULCY, M. GANTOIS, JFREY, D. HERTZ, Precipitation des carbures au cours de la cementation en phase gazeuse d’aciers inoxydables : approche thermodynamique, cinétique et structurale. Materiaux 2002, Tours, 21-25 Octobre 2002.
[6]
P. JACQUET, D. ROUSSE, G BERNARD, M LAMBERTIN, A novel technique to monitor carburizing processes, Materials Chemistry and Physics 77(2002) 542-551.
[7]
P. JACQUET, D.R. ROUSSE, Mesurements of carbon fluxes during low pressure carburising, Metallurgy and New Materials Researches, Vol.X, n°3, 2001,p1-16.
[8]
Tichonov. A, Samarsky. A : Les équations de physique mathématique, MOSCOU, Edition la technique 1951.
[9]
Suzana. Maria. Coelho. Arno. Muller; Metallurgia, ABM, vol 37, N° 282, Mai 1981.
[10]
Andreev. U, Potapova. S : Modèle mathématique du processus de la cémentation gazeuse, les fours dans l’entreprise de construction, MOSCOU, TOME (19), 1972.
[11]
T. Korn, G. Korn: mathématical Hand Book for scientists and ingineers, 2 ed, Mc Graw-Hill Book Company, (1968).
[12]
A. Fick, ann. Der. Physik (1855),94, 59 ( in German).
[13]
A. Fick, Phil. Mag. (1855), 10, 30. (in English).
[14]
B. Massalski (Ed.), ASM, 1990, p. 1471.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186