International Journal of Sustainable and Green Energy

| Peer-Reviewed |

Three-phase Matrix Converter Applied to Wind Energy Conversion System for Wind Speed Estimation

Received: 14 April 2015    Accepted: 29 April 2015    Published: 12 May 2015
Views:       Downloads:

Share This Article

Abstract

With continuous increasing concerns of the energy issues, renewable energy sources are getting much attention worldwide. This paper presents a full description of the grid-tie Wind Energy Conversion System (WECS) based on interfacing a Permanent Magnet Synchronous Generator (PMSG) to the utility grid by using the direct AC/AC matrix converter. Due to the random variation of wind velocities, wind speed estimation control technique is used to estimate the wind velocity and extracts the maximum power at all wind velocities. The matrix converter controls the maximum power point tracking MPPT by adjusting the PMSG terminal frequency, and hence, the shaft speed. In addition, the matrix converter controls the grid injected current to be in-phase with the grid voltage for the unity power factor. Space Vector Modulation is used to generate the PWM signals of the matrix converter switches. The MPPT algorithm is included in the speed control system of the PMSG. The system dynamic performance is investigated using Matlab/Simulink.

DOI 10.11648/j.ijrse.20150403.16
Published in International Journal of Sustainable and Green Energy (Volume 4, Issue 3, May 2015)
Page(s) 117-124
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Permanent Magnet Synchronous Generator (PMSG), Matrix Converter (MC)

References
[1] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. P. Guisado, M. A. Prats, J. I. León, and N. Moreno-Alfonso, "Power-electronic systems for the grid integration of renewable energy sources: A survey," Industrial Electronics, IEEE Transactions on, vol. 53, pp. 1002-1016, 2006.
[2] Z. Olaofe and K. Folly, "Energy storage technologies for small scale wind conversion system," in Power Electronics and Machines in Wind Applications (PEMWA), 2012 IEEE, 2012, pp. 1-5.
[3] T. Shanker and R. K. Singh, "Wind energy conversion system: A review," in Engineering and Systems (SCES), 2012 Students Conference on, 2012, pp. 1-6.
[4] S. Barakati, M. Kazerani, and X. Chen, "A new wind turbine generation system based on matrix converter," in Power Engineering Society General Meeting, 2005. IEEE, 2005, pp. 2083-2089.
[5] V. Agarwal, R. K. Aggarwal, P. Patidar, and C. Patki, "A novel scheme for rapid tracking of maximum power point in wind energy generation systems," Energy conversion, IEEE transactions on, vol. 25, pp. 228-236, 2010.
[6] Y. Izumi, A. Pratap, K. Uchida, A. Uehara, T. Senjyu, A. Yona, and T. Funabashi, "A control method for maximum power point tracking of a PMSG-based WECS using online parameter identification of wind turbine," in Power Electronics and Drive Systems (PEDS), 2011 IEEE Ninth International Conference on, 2011, pp. 1125-1130.
[7] Y. Errami, M. Maaroufi, and M. Ouassaid, "A MPPT vector control of electric network connected Wind Energy Conversion System employing PM Synchronous Generator," in Renewable and Sustainable Energy Conference (IRSEC), 2013 International, 2013, pp. 228-233.
[8] T.-F. Chan, "Permanent-magnet machines for distributed power generation: A review," in 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1-6.
[9] H. Polinder, F. F. Van der Pijl, G.-J. De Vilder, and P. J. Tavner, "Comparison of direct-drive and geared generator concepts for wind turbines," Energy conversion, IEEE transactions on, vol. 21, pp. 725-733, 2006.
[10] J. Elizondo, M. Macías, and O. Micheloud, "Matrix Converters Applied to Wind Energy Conversion Systems, Technologies and Investigation Trends," in Electronics, Robotics and Automotive Mechanics Conference, 2009. CERMA'09., 2009, pp. 435-439.
[11] E. Koutroulis and K. Kalaitzakis, "Design of a maximum power tracking system for wind-energy-conversion applications," Industrial Electronics, IEEE Transactions on, vol. 53, pp. 486-494, 2006.
[12] L. Zhang, B. Zhou, F. Cheng, and G. Zuo, "A novel maximum power point tracking control method suitable for a doubly salient electro-magnetic wind power generator system," in World Non-Grid-Connected Wind Power and Energy Conference, 2009. WNWEC 2009, 2009, pp. 1-6.
[13] S. M. Barakati, "Modeling and controller design of a wind energy conversion system including a matrix converter," University of Waterloo, 2008.
[14] S. M. Barakati, M. Kazerani, and J. D. Aplevich, "Maximum power tracking control for a wind turbine system including a matrix converter," Energy conversion, IEEE transactions on, vol. 24, pp. 705-713, 2009.
[15] M. Abdullah, A. Yatim, C. Tan, and R. Saidur, "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, vol. 16, pp. 3220-3227, 2012.
[16] T. Nakamura, S. Morimoto, M. Sanada, and Y. Takeda, "Optimum control of IPMSG for wind generation system," in Power Conversion Conference, 2002. PCC-Osaka 2002. Proceedings of the, 2002, pp. 1435-1440.
[17] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, "Sensorless output maximization control for variable-speed wind generation system using IPMSG," in Industry Applications Conference, 2003. 38th IAS Annual Meeting. Conference Record of the, 2003, pp. 1464-1471.
[18] A. Mahdi, W. Tang, and Q. Wu, "Estimation of tip speed ratio using an adaptive perturbation and observation method for wind turbine generator systems," in Renewable Power Generation (RPG 2011), IET Conference on, 2011, pp. 1-6.
[19] J. S. Thongam and M. Ouhrouche, "MPPT control methods in wind energy conversion systems," Fundamental and Advanced Topics in Wind Power, pp. 339-360, 2011.
[20] H.-S. Shin, C. Xu, J.-M. Lee, J.-D. La, and Y.-S. Kim, "MPPT control technique for a PMSG wind generation system by the estimation of the wind speed," in Electrical Machines and Systems (ICEMS), 2012 15th International Conference on, 2012, pp. 1-6.
[21] D. Casadei, G. Grandi, G. Serra, and A. Tani, "Space vector control of matrix converters with unity input power factor and sinusoidal input/output waveforms," in Power Electronics and Applications, 1993., Fifth European Conference on, 1993, pp. 170-175.
[22] P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, "Matrix converters: a technology review," Industrial Electronics, IEEE Transactions on, vol. 49, pp. 276-288, 2002.
[23] A. Alesina and M. Venturini, "Solid-state power conversion: A Fourier analysis approach to generalized transformer synthesis," Circuits and Systems, IEEE Transactions on, vol. 28, pp. 319-330, 1981.
[24] A. Alesina and M. Venturini, "Analysis and design of optimum-amplitude nine-switch direct AC-AC converters," Power Electronics, IEEE Transactions on, vol. 4, pp. 101-112, 1989.
[25] J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler, "A review of control and modulation methods for matrix converters," IEEE Transactions on Industrial Electronics, vol. 59, pp. 58-70, 2012.
[26] J. Rodriguez, E. Silva*, F. Blaabjerg, P. Wheeler, J. Clare, and J. Pontt, "Matrix converter controlled with the direct transfer function approach: analysis, modelling and simulation," International journal of electronics, vol. 92, pp. 63-85, 2005.
[27] L. Zhang, C. Watthanasarn, and W. Shepherd, "Control of AC-AC matrix converters for unbalanced and/or distorted supply voltage," in Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, 2001, pp. 1108-1113.
[28] M. M. Hussein, M. Orabi, M. E. Ahmed, and M. A. Sayed, "Simple sensorless control technique of permanent magnet synchronous generator wind turbine," in Power and Energy (PECon), 2010 IEEE International Conference on, 2010, pp. 512-517.
[29] L. V. Fausett, Applied numerical analysis using MATLAB: Pearson, 2008.
[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C vol. 2: Citeseer, 1996.
[31] M. Y. Lee, P. Wheeler, and C. Klumpner, "Space-vector modulated multilevel matrix converter," Industrial Electronics, IEEE Transactions on, vol. 57, pp. 3385-3394, 2010.
[32] M. Jussila and H. Tuusa, "Comparison of direct and indirect matrix converters in induction motor drive," in IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on, 2006, pp. 1621-1626.
[33] M. Rivera, J. Rodriguez, B. Wu, J. R. Espinoza, and C. A. Rojas, "Current control for an indirect matrix converter with filter resonance mitigation," Industrial Electronics, IEEE Transactions on, vol. 59, pp. 71-79, 2012.
Author Information
  • Department Electrical Engineering, South Valley University, Qena, Egypt

  • Department Electrical Engineering, South Valley University, Qena, Egypt

  • Department Electrical Engineering, South Valley University, Qena, Egypt

Cite This Article
  • APA Style

    Alaa Eldien M. M. Hassan, Mahmoud A. Sayed, Essam E. M. Mohamed. (2015). Three-phase Matrix Converter Applied to Wind Energy Conversion System for Wind Speed Estimation. International Journal of Sustainable and Green Energy, 4(3), 117-124. https://doi.org/10.11648/j.ijrse.20150403.16

    Copy | Download

    ACS Style

    Alaa Eldien M. M. Hassan; Mahmoud A. Sayed; Essam E. M. Mohamed. Three-phase Matrix Converter Applied to Wind Energy Conversion System for Wind Speed Estimation. Int. J. Sustain. Green Energy 2015, 4(3), 117-124. doi: 10.11648/j.ijrse.20150403.16

    Copy | Download

    AMA Style

    Alaa Eldien M. M. Hassan, Mahmoud A. Sayed, Essam E. M. Mohamed. Three-phase Matrix Converter Applied to Wind Energy Conversion System for Wind Speed Estimation. Int J Sustain Green Energy. 2015;4(3):117-124. doi: 10.11648/j.ijrse.20150403.16

    Copy | Download

  • @article{10.11648/j.ijrse.20150403.16,
      author = {Alaa Eldien M. M. Hassan and Mahmoud A. Sayed and Essam E. M. Mohamed},
      title = {Three-phase Matrix Converter Applied to Wind Energy Conversion System for Wind Speed Estimation},
      journal = {International Journal of Sustainable and Green Energy},
      volume = {4},
      number = {3},
      pages = {117-124},
      doi = {10.11648/j.ijrse.20150403.16},
      url = {https://doi.org/10.11648/j.ijrse.20150403.16},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ijrse.20150403.16},
      abstract = {With continuous increasing concerns of the energy issues, renewable energy sources are getting much attention worldwide. This paper presents a full description of the grid-tie Wind Energy Conversion System (WECS) based on interfacing a Permanent Magnet Synchronous Generator (PMSG) to the utility grid by using the direct AC/AC matrix converter. Due to the random variation of wind velocities, wind speed estimation control technique is used to estimate the wind velocity and extracts the maximum power at all wind velocities. The matrix converter controls the maximum power point tracking MPPT by adjusting the PMSG terminal frequency, and hence, the shaft speed. In addition, the matrix converter controls the grid injected current to be in-phase with the grid voltage for the unity power factor. Space Vector Modulation is used to generate the PWM signals of the matrix converter switches. The MPPT algorithm is included in the speed control system of the PMSG. The system dynamic performance is investigated using Matlab/Simulink.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Three-phase Matrix Converter Applied to Wind Energy Conversion System for Wind Speed Estimation
    AU  - Alaa Eldien M. M. Hassan
    AU  - Mahmoud A. Sayed
    AU  - Essam E. M. Mohamed
    Y1  - 2015/05/12
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijrse.20150403.16
    DO  - 10.11648/j.ijrse.20150403.16
    T2  - International Journal of Sustainable and Green Energy
    JF  - International Journal of Sustainable and Green Energy
    JO  - International Journal of Sustainable and Green Energy
    SP  - 117
    EP  - 124
    PB  - Science Publishing Group
    SN  - 2575-1549
    UR  - https://doi.org/10.11648/j.ijrse.20150403.16
    AB  - With continuous increasing concerns of the energy issues, renewable energy sources are getting much attention worldwide. This paper presents a full description of the grid-tie Wind Energy Conversion System (WECS) based on interfacing a Permanent Magnet Synchronous Generator (PMSG) to the utility grid by using the direct AC/AC matrix converter. Due to the random variation of wind velocities, wind speed estimation control technique is used to estimate the wind velocity and extracts the maximum power at all wind velocities. The matrix converter controls the maximum power point tracking MPPT by adjusting the PMSG terminal frequency, and hence, the shaft speed. In addition, the matrix converter controls the grid injected current to be in-phase with the grid voltage for the unity power factor. Space Vector Modulation is used to generate the PWM signals of the matrix converter switches. The MPPT algorithm is included in the speed control system of the PMSG. The system dynamic performance is investigated using Matlab/Simulink.
    VL  - 4
    IS  - 3
    ER  - 

    Copy | Download

  • Sections