Please enter verification code
Confirm
The Oligopeptides, Homologous of ACTH15-18 Sequence: Neurotrophic and Anti-inflammatory Activity on the Model of Cerebral Ischemia in Rats
International Journal of Psychological and Brain Sciences
Volume 1, Issue 3, December 2016, Pages: 62-68
Received: Oct. 19, 2016; Accepted: Nov. 5, 2016; Published: Dec. 16, 2016
Views 3212      Downloads 102
Authors
Roman Danylovych Deiko, Department of Pharmacology, National University of Pharmacy, Kharkiv, Ukraine
Serhiy Yuriyovych Shtrygolʹ, Department of Pharmacology, National University of Pharmacy, Kharkiv, Ukraine
Tetyana Victorivna Gorbach, Department of Biochemistry, Kharkiv National Medical University, Kharkiv, Ukraine
Alexandr Alexandrovich Kolobov, Department of Chemistry of Peptides, State Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
Andrey Semenovich Simbirtsev, Department of Chemistry of Peptides, State Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
Article Tools
Follow on us
Abstract
The series of tetrapeptides, homologues of ACTH15-18 sequence that contain D-form of lysine and arginine have been synthesized at the State Research Institute of Highly Pure Biopreparations (Saint-Petersburg, Russian Federation). Previous research allowed to reveal their neuroprotectivе, anti-hypoxic and favorable psychotropic properties and capability to stimulate blood supply to the injured brain. The influence of neuropeptide on rats survival, neurological deficit (ND), nerve growth factor (NGF) expression, tumor necrosis factor α (TNF-α), interleukine-1 beta (IL-1β) and interleukine-4 (IL-4) levels in rats brain tissue was studied on the irreversible bilateral carotid occlusion model. Neuroprotectivе properties of the neuropeptides KK-1 and KK-5 namely increase in rats with acute ischemic stroke (AIS) survival rate up to 75% and 80%, respectively, were shown. Neuropeptides decreased ND 1.7 times compared with the untreated group (UG). Neuroprotectivе effect of the neuropeptides is manifested by their ability to decrease the level of NGF compensatory overexpression, pro-inflammatory and anti-inflammatory cytokines such as TNF-α, IL-1β, IL-4. It has been established that the mechanism of the tetrapeptides KK-1 and KK-5 neuroprotectivе activity is connected with their neurotrophic and anti-inflammatory action.
Keywords
Cerebral Ischemia, Cytokines, Nerve Growth Factor, Neuroprotection, Oligopeptides, Rats
To cite this article
Roman Danylovych Deiko, Serhiy Yuriyovych Shtrygolʹ, Tetyana Victorivna Gorbach, Alexandr Alexandrovich Kolobov, Andrey Semenovich Simbirtsev, The Oligopeptides, Homologous of ACTH15-18 Sequence: Neurotrophic and Anti-inflammatory Activity on the Model of Cerebral Ischemia in Rats, International Journal of Psychological and Brain Sciences. Vol. 1, No. 3, 2016, pp. 62-68. doi: 10.11648/j.ijpbs.20160103.14
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
T. N. Taylor, P. H. Davis, J. C. Torner, J. Holmes, J. W. Mayer, M. F. Jacobson. Lifetime cost of stroke in the United States. Stroke. 1996; 27: 1459-1466.
[2]
H. C. Emsley, P. J. J. Tyrrel. Inflammation and infection in clinical stroke. Cereb. Blood Flow Metab. 2002; 22: 1399-1419.
[3]
E. I. Gusev, V. I. Skvortsova. The Brain Ischemia. Medicina, Moscow. 2001, 328.
[4]
B. H. Clausen, K. L. Lambertsen, A. A. Babcock, T. H. Holm, F. Dagnaes-Hansen, B. Finsen. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 2008; 5: 46.
[5]
J. Gehrmann, Y. Matsumoto, G. W. Kreutzberg. Microglia: intrinsic immuneffector cell of the brain. Brain Res. 1995; 20: 269-287.
[6]
H. Lorez, F. Keller, G. Ruess, U. Otten. Nerve growth factor increases in adult rat brain after hypoxic injury. Neuroscience Letters. 1989; 98: 339-344.
[7]
Kolyasnikova K. N., Gudasheva T. A., Nazarova G. A., Antipov P. I., Nikolaev S. V., Antipova T. A., Voronina T. A., Seredenin S. B. Similarity of Cycloprolilglycine to Piracetam in Antihypoxic and Neuroprotective Effects. Experimental and Clinical Pharmacology. 2012; 75: 3-6.
[8]
Lisak R. P., Nedelkoska L. Bealmear B., Benjamins J. A. Melanocortin receptor agonist ACTH 1-39 protects rat forebrain neurons from apoptotic, excitotoxic and inflammation-related damage. Exp Neurol. 2015, 273: 161-167.
[9]
Benjamins J. A., Nedelkoska L., Lisak R. P. Adrenocorticotropin hormone 1-39 promotes proliferation and differentiation of oligodendroglial progenitor cells and protects from excitotoxic and inflammation-related damage. J Neurosci Res. 2014, 92 (10): 1243-1251.
[10]
Windebank A. J., Smith A. G., Russell J. W. The effect of nerve growth factor, ciliary neurotrophic factor, and ACTH analogs on cisplatin neurotoxicity in vitro. Neurology. 1994, 44: 488-94.
[11]
Catania A., Lonati C., Sordi A., Carlin A., Leonardi P., Gatti S. The Melanocortin System in Control of Inflammation. The Scientific World Journal. 2010, 10: 1840–1853.
[12]
Strand F. L., Zuccarelli L. A., Williams K. A., Lee S. J., Lee T. S., Antonawich F. J., Alves S. E. Melanotropins as growth factors. Ann N Y Acad Sci. 1993, 680: 29-50.
[13]
M. Kracht, H. Holtmann. Encyclopedia of Molecular Pharmacology, Berlin, Heidelberg, New York. 2008; p. 753
[14]
Costa J. L., Bui S., Reed P., Dores R. M., Brennan M. B., Hochgeschwender U. Mutational analysis of evolutionarily conserved ACTH residues. Gen Comp Endocrinol. 2004, 136(1):12-6.
[15]
R. D. Deiko, S. Yu. Shtrygolʹ, A. A. Kolobov, A. S. Simbirtsev. Cerebroprotective properties of the original peptides homologous to ACTH15–18 primary sequence (experimental study). Cytokines and Inflammation. 2015; 14: 65-69.
[16]
Deiko R. D., Shtrygol’ S. Yu., Kolobov A. A., Simbirtsev A. S. Оrganotropic anti-hypoxic properties of the novel neuropeptides, homologous of primary sequence of adrenocorticotropic hormone15–18. Ukrainskyi Medychnyi Almanakh. 2015, 18(4): 16-21.
[17]
R. D. Deiko, S. Yu. Shtrygolʹ, A. A. Kolobov, O. Ya. Mishchenko. The correction of neurological and cognitive disorders on the model of cerebral ischemia using original neuroactive oligopeptides. Pharmacol. Med. Toxicol. 2015; 42: 24-29.
[18]
Deiko R. D., Shtrygol’ S. Yu., Kolobov A. A., Khodakivskiy O. A., Ivantsyk L. B. Correction of Rats’ Systemic and Cerebral Blood Circulation with the Cerebral Ischemia-Reperfusion Model Using New Neuropeptides, ACTH15-18 Derivates. Clinical Pharmacy. 2015. 19(4): 46-51.
[19]
Deiko R. D., Shtrygol S. Yu., Kolobov A. A., Khodakovskiy O. A., Chereshniuk I. L. The Influence of New Neuroprotector acetyl-(D-Lys)-Lys-Arg-Arg-Amide (КК-1) on neurodestruction and Neuroapoptosis of Rats in Conditions of Acute Stroke. Vestnik Farmacii. 2016. 71(1): 96-102.
[20]
Deiko R. D., Shtrygol S. Yu., Laryanovskaya Yu. B., Kolobov A. A. The Influence of Oligopeptides Analogues of ACTH15-18 Sequence On the Histostructure of Rats Brain With the Cerebral Ischemia Model. Pharmacom. 2015. 2: 76-84.
[21]
Ya. Wang-Fisher. Manual of Stroke Models in Rats, CRC Press, London, New York. 2009, 332 p.
[22]
C. P. McGraw, A. G. Pashayan, O. T. Wendel. Cerebral infarction in the Mongolian gerbil exacerbated by phenoxybenzamine treatment. Stroke. 1976; 7: 485-488.
[23]
I. M. Rodionov. The nerve growth factor and its role in experimental hypertrophy and destruction of sympathetic nervous system. Soros educational journal. 1996; 3: 17-22.
[24]
D. W. Brann, K. Dhandapani, C. Wakade, V. B. Mahesh, M. M. Khan. Neurotrophic and Neuroprotective Actions of Estrogen: Basic Mechanisms and Clinical Implications. Steroids. 2007; 72: 381-405.
[25]
T. H. Lee, H. Kato, K. Kogure, Y. Itoyama. Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke. 1998; 29: 1687-1696.
[26]
H. Kimelberg, P. Feurstel, Y. Jin, J. Paquette, A. Boulos, R. W. Keller, B. I. Tranmer. Acute treatment with tamoxifen reduces ischemic damage following middle cerebral artery occlusion. Neuroreport. 2000; 11: 2675-2679.
[27]
J. Dickenson, F. Freeman, C. L. Mills, S. Sivasubramaniam, C. Thode. Molecular Pharmacology. From DNA to Drug Discovery, Wiley Blackwell, Oxford, 2013, 409 p.
[28]
I. Mocchetti, G. Spiga, V. Y. Hayes, P. J. Isackson, A. Colangelo. Glucocorticoids Differentially Increase Nerve Growth Factor and Basic Fibroblast Growth Factor in the Rat Brain. J. Neurosci. 1996; 16: 2141-2148.
[29]
F. L. Strand, L. A. Zuccarelli, K. A. Williams, S. J. Lee, T. S. Lee, F. J. Antonawich, S. E. Alves. Melanotropins as growth factors. Ann N Y Acad Sci. 1993; 680: 29-50.
[30]
R. Lee, P. Kermani, K. K. Teng, B. L. Hempstead. Regulation of cell survival by secreted proneurotrophins. Science. 2001, 294: 1945-1948.
[31]
M. A. Bagum, O. Miyamoto, T. Toyoshima, T. Masada, Sh.-i. Nagahata, T. Itano. The Contribution of Low Affinity NGF Receptor (p75NGFR) to Delayed Neuronal Death after Ischemia in the Gerbil Hippocampus. Acta Med. Okayama. 2001; 55: 19-24.
[32]
O. Niederhauser, M. Mangold, R. Schubenel, E. A. Kusznir, D. Schmidt, C. Hertel. NGF ligand alters NGF signaling via p75(NTR) and trkA. J Neurosci Res. 2000; 61: 263-272.
[33]
E. C. Yeiser, N. J. Rutkoski, A. Naito, J. - i. Inoue, B. D. Carter. Neurotrophin Signaling through the p75 Receptor Is Deficient in traf6–/– Mice. J Neurosci. 2004; 24: 10521-10529.
[34]
A. S. Simbirtsev. Cytokines in the Pathogenesis of Infectious and Noninfectious Human Diseases. Medical Academic Journal. 2013; 13: 18-41.
[35]
O. Touzani, H. Boutin, R. LeFeuvre, L. Parker, A. Miller, G. Luheshi, N. Rothwell. Interleukin-1 Influences Ischemic Brain Damage in the Mouse Independently of the Interleukin-1 Type I Receptor. J Neurosci. 2002; 22: 38-43.
[36]
V. O. Malakhov, V. O. Monastyrsky. The News of Medicine and Pharmacy. 2010; 316 (online). Fly-base: http://www.mif-ua.com/archive/article/12052.
[37]
J. Huang, U. M. Upadhyay, R. G. Tamargo. Inflammation in stroke and focal cerebral ischemia. Surg Neurol. 2006; 66: 232-245.
[38]
V. V. Efremov. Cytokine Status Disturbances in Acute Brain Ischemia and its Correction with Phlogenzyme. Journal of VolgSMU. 2006; 2: 58-61.
[39]
X. Zhao, H. Wang, G. Sun, J. Zhanq, N. J. Edwards, J. Aronowski. Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage. J Neurosci. 2015; 35: 11281-11291.
[40]
X. Xiong, G. E. Barreto, L. Xu. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke. 2011; 42: 2026-2032.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186