Neuroimaging Insights Pertaining to Physical Activity Effects upon Brain Structure in Mild Cognitive Impairment and in Alzheimer’s Disease
International Journal of Psychological and Brain Sciences
Volume 3, Issue 3, June 2018, Pages: 22-32
Received: Jun. 3, 2018; Accepted: Jun. 21, 2018; Published: Jul. 11, 2018
Views 105      Downloads 5
Authors
Youshan Zhang, Department of Computer Science and Engineering, Lehigh University, Bethlehem, USA
Nicole Marcione, Department of Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA
Danielle Borrajo, Department of Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
Julia Boudreau, Department of Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
Neda Khanjani, Department of Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
Yujia Zhong, Department of Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
Article Tools
Follow on us
Abstract
Alzheimer’s disease (AD) and mild cognitive impairments (MCI) are two neurological conditions that commonly affect the aging brain. These conditions cause debilitating symptoms, namely, the loss of the ability to perform activities of daily living. This prevents the patient from being able to live independently and severely decreases their quality of life. A growing treatment option involves the patient integrating physical activity (PA) into their daily lives. There is an increasing amount of evidence that supports both the psychological and anatomical improvements of MCI and AD patients that engage in PA. The different cognitive improvements measured via neuropsychological assessments complement the neuroimaging data found in current literature. Different neuroimaging modalities such as PET, MRI, fMRI and EEG all contribute to the amount of data in support of PA as a viable treatment option for people with AD and MCI. Notable improvements can be found in the hippocampal region of the brain. Other lifestyle advancements such as diet changes and sleeping habits can also have a profound effect on AD and MCI patients. Our research is important because it will lead to treatments that can delay the onset of these diseases or even aid in finding an ultimate cure.
Keywords
Alzheimer’s Disease, Mild Cognitive Impairment, Physical Activity, Neuroimaging
To cite this article
Youshan Zhang, Nicole Marcione, Danielle Borrajo, Julia Boudreau, Neda Khanjani, Yujia Zhong, Neuroimaging Insights Pertaining to Physical Activity Effects upon Brain Structure in Mild Cognitive Impairment and in Alzheimer’s Disease, International Journal of Psychological and Brain Sciences. Vol. 3, No. 3, 2018, pp. 22-32. doi: 10.11648/j.ijpbs.20180303.11
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
A. Alzheimer. (1907). Uber einen eigenartige Erkranung der Hirnrinde Allgemeine Zeitschrift fur Psychiatrie und Psychisch-Gerichtisch Medizin, 64 (1907), pp. 146–147.
[2]
Ballard C, Gauthier S, Corbett A, et al. (19 March 2011). "Alzheimer's disease". Lancet. 377 (9770): 1019–31. doi:10.1016/S0140-6736(10)61349-9. PMID 21371747
[3]
Burns A, Iliffe S (5 February 2009). "Alzheimer's disease". The BMJ. 338: b158. doi:10.1136/bmj.b158. PMID 19196745
[4]
Cummings, J. L., & Cole, G. (2002). Alzheimer disease. Jama, 287(18), 2335-2338. doi:10.1001/jama.287.18.2335
[5]
MacGill, M. (2016). Alzheimer's Disease: Causes, Symptoms and Treatment. Medical News Today, April.
[6]
Baumgart, M., Snyder, H. M., Carrillo, M. C., Fazio, S., Kim, H., & Johns, H. (2015). Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 11(6), 718-726. doi:10.1016/j.jalz.2015.05.016
[7]
Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125-130. doi:10.1111/1467-9280.t01-1-01430
[8]
Kennedy, G., Hardman, R. J., Macpherson, H., Scholey, A. B., & Pipingas, A. (2016). How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. Journal of Alzheimer's Disease, 55(1), 1-18. doi:10.3233/JAD-160665
[9]
Öhman, H., Savikko, N., Strandberg, T. E., Kautiainen, H., Raivio, M. M., Laakkonen, M.,... Pitkälä, K. H. (2016). Effects of exercise on cognition: The finnish alzheimer disease exercise trial: A randomized, controlled trial. Journal of the American Geriatrics Society, 64(4), 731-738. doi:10.1111/jgs.14059
[10]
Erickson, K. I., Weinstein, A. M., & Lopez, O. L. (2012). Physical activity, brain plasticity, and alzheimer's disease. Archives of Medical Research, 43(8), 615-621. doi:10.1016/j.arcmed.2012.09.008
[11]
Brown, B. M., Peiffer, J. J., & Martins, R. N. (2013). Multiple effects of physical activity on molecular and cognitive signs of brain aging: Can exercise slow neurodegeneration and delay alzheimer's disease? Molecular Psychiatry, 18(8), 864. doi:10.1038/mp.2012.162
[12]
Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 1778-1783.
[13]
Hurd, M. D., Martorell, P., & Langa, K. (2015). Future monetary costs of dementia in the united states under alternative dementia prevalence scenarios. Journal of Population Ageing, 8(1), 101-112. doi:10.1007/s12062-015-9112-4.
[14]
Ten Brinke, L. F., Bolandzadeh, N., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., Miran-Khan, K., & Liu-Ambrose, T. (2014). Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med, bjsports-2013.
[15]
Querfurth HW., LaFerla FM. (2010). Alzheimer's disease. New England Journal of Medicine, 362, 329–344.
[16]
Gill SS et al. (2007). Antipsychotic drug use and mortality in older adults with dementia. Ann Intern Med. 146:775-786.
[17]
Schneeweiss S et al. (2007). Risk of death associated with the use of conventional versus atypical antipsychotic drugs among elderly patients. CMAJ. 176:627-632.
[18]
Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. (2011, September). Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. In Mayo Clinic Proceedings (Vol. 86, No. 9, pp. 876-884). Elsevier.
[19]
Yu, F., Bronas, U. G., Konety, S., Nelson, N. W., Dysken, M., Jack, J., Clifford, Smith, G. (2014). Effects of aerobic exercise on cognition and hippocampal volume in alzheimer's disease: Study protocol of a randomized controlled trial (the FIT-AD trial). Trials, 15, 394
[20]
Liang, K. Y., Mintun, M. A., Fagan, A. M., Goate, A. M., Bugg, J. M., Holtzman, D. M.,... & Head, D. (2010). Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Annals of neurology, 68(3), 311-318.
[21]
Henrique de Gobbi Porto, F., Martins Novaes Coutinho, A., Lucia de Sá Pinto, A., Gualano, B., Luís de Souza Duran, F., Prando, S.,... & Nitrini, R. (2015). Effects of aerobic training on cognition and brain glucose metabolism in subjects with mild cognitive impairment. Journal of Alzheimer's Disease, 46(3), 747-760.
[22]
Perea, R. D., Vidoni, E. D., Morris, J. K., Graves, R. S., Burns, J. M., & Honea, R. A. (2015). Cardiorespiratory fitness and white matter integrity in Alzheimer’s disease. Brain imaging and behavior, 1-9.
[23]
Brinke, L. F., Bolandzadeh, N., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., Miran-Khan, K., & Liu-Ambrose, T. (2015). Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: A 6-month randomised controlled trial.
[24]
Twamley, E. W., Ropacki, S. A. L., & Bondi, M. W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer's disease. Journal of the International Neuropsychological Society, 12(05), 707-735.
[25]
Ewers, M., Walsh, C., Trojanowski, J. Q., Shaw, L. M., Petersen, R. C., Jack, C. R.,... & Vellas, B. (2012). Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance. Neurobiology of aging, 33(7), 1203-1214.
[26]
Schmand, B., Eikelenboom, P., & Van Gool, W. A. (2011). Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing Alzheimer's disease in younger and older age cohorts. Journal of the american geriatrics society, 59(9), 1705-1710.
[27]
Bernardo, T. C., Marques‐Aleixo, I., Beleza, J., Oliveira, P. J., Ascensão, A., & Magalhães, J. (2016). Physical exercise and brain mitochondrial fitness: the possible role against alzheimer's disease. Brain Pathology, 26(5), 648-663.
[28]
Tanigawa, T., Takechi, H., Arai, H., Yamada, M., Nishiguchi, S., & Aoyama, T. (2014). Effect of physical activity on memory function in older adults with mild alzheimer's disease and mild cognitive impairment. Geriatrics & Gerontology International, 14(4), 758-762.
[29]
Hoffmann, K., Frederiksen, K. S., Sobol, N. A., Beyer, N., Vogel, A., Simonsen, A. H., Waldemar, G. (2013). Preserving cognition, quality of life, physical health and functional ability in alzheimer's disease: The effect of physical exercise (ADEX trial): Rationale and design. Neuroepidemiology, 41 (3-4), 198-207.
[30]
Head, D., Bugg, J. M., Goate, A. M., Fagan, A. M., Mintun, M. A., Benzinger, T.,... Morris, J. C. (2012). Exercise engagement as a moderator of APOE effects on amyloid deposition. Archives of Neurology, 69(5), 636-643. doi: 10.1001/archneurol.2011.845
[31]
Buchman, A. S., Boyle, P. A., Wilson, R. S., Beck, T. L., Kelly, J. F., & Bennett, D. A. (2009). Apolipoprotein e e4 allele is associated with more rapid motor decline in older persons. Alzheimer Disease and Associated Disorders, 23(1), 63-69. doi:10.1097/WAD.0b013e31818877b5
[32]
Doi, T., Shimada, H., Makizako, H., Tsutsumimoto, K., Uemura, K., & Suzuki, T. (2015). Apolipoprotein E genotype and physical function among older people with mild cognitive impairment: APOE and physical function among MCI. Geriatrics & Gerontology International, 15(4), 422-427. doi: 10.1111/ggi.12291
[33]
Smith, J. C., Nielson, K. A., Woodard, J. L., Seidenberg, M., Durgerian, S., Hazlett, K. E., Rao, S. M. (2014). Physical activity reduces hippocampal atrophy in elders at genetic risk for alzheimer's disease. Frontiers in Aging Neuroscience, 6, 61.
[34]
Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050-11055.
[35]
Reiter, K., Nielson, K. A., Smith, T. J., Weiss, L. R., Alfini, A. J., & Smith, J. C. (2015). Improved cardiorespiratory fitness is associated with increased cortical thickness in mild cognitive impairment. Journal of the International Neuropsychological Society, 21(10), 757-767.
[36]
Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Bugarini, R., Fiaschi, A. I.,... Berra, B. (2005). Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with Omega‐3 polyunsaturated fatty acids. European Journal of Clinical Investigation, 35(8), 499-507. doi:10.1111/j.1365-2362.2005.01540.x
[37]
Helland, I. B., Smith, L., Saarem, K., Saugstad, O. D., & Drevon, C. A. (2003). Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics, 111(1), e39-44. doi:10.1542/peds.111.1.e39
[38]
McCann J. C., Ames B. N. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. American Journal of Clinical Nutrition. 2005; 82 (2): 281–295.
[39]
Judge, M. P., Harel, O., & Lammi-Keefe, C. J. (2007). Maternal consumption of a docosahexaenoic acid-containing functional food during pregnancy: Benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 mo. American Journal of Clinical Nutrition, 85(6), 1572-1577.
[40]
Henrique de Gobbi Porto, F., Martins Novaes Coutinho, A., Lucia de Sá Pinto, A., Gualano, B., Luís de Souza Duran, F., Prando, S.,... & Nitrini, R. (2015). Effects of aerobic training on cognition and brain glucose metabolism in subjects with mild cognitive impairment. Journal of Alzheimer's Disease, 46(3), 747-760.
[41]
Agostoni, C., Zuccotti, G. V., Radaelli, G., Besana, R., Podestà, A., Sterpa, A.,... Giovannini, M. (2009; 2008). Docosahexaenoic acid supplementation and time at achievement of gross motor milestones in healthy infants: A randomized, prospective, double-blind, placebo-controlled trial. American Journal of Clinical Nutrition, 89(1), 64-70. doi:10.3945/ajcn.2008.26590
[42]
Boudrault, C., Bazinet, R. P., & Ma, D. W. L. (2009). Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in alzheimer's disease. The Journal of Nutritional Biochemistry, 20(1), 1-10. doi:10.1016/j.jnutbio.2008.05.016
[43]
Kalmijn, S., M P J van Boxtel, Ocké, M., W M M Verschuren, Kromhout, D., & Launer, L. J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology, 62(2), 275-280. doi:10.1212/01.WNL.0000103860.75218.A5
[44]
Dullemeijer, C., Durga, J., Brouwer, I. A., Rest, v. d., O, Kok, F. J., Brummer, R. J.,... Verhoef, P. (2007). N-3 fatty acid proportions in plasma and cognitive performance in older adults 1-3. American Journal of Clinical Nutrition, 86, 1479-1485.
[45]
Muzio, F., Mondazzi, L., Harris, W. S., Sommariva, D., & Branchi, A. (2007). Effects of moderate variations in the macronutrient content of the diet on cardiovascular disease risk factors in obese patients with the metabolic syndrome. The American Journal of Clinical Nutrition, 86(4), 946.
[46]
Kidd, P. M. (2007). Omega-3 DHA and EPA for cognition, behavior, and mood: Clinical findings and structural-functional synergies with cell membrane phospholipids. Alternative Medicine Review: A Journal of Clinical Therapeutic, 12(3), 207.
[47]
Chalon, S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 75(4), 259-269. doi: 10.1016/j.plefa.2006.07.005
[48]
Bauer, I., Crewther, S., Pipingas, A., Sellick, L., & Crewther, D. (2014). Does omega‐3 fatty acid supplementation enhance neural efficiency? A review of the literature. Human Psychopharmacology: Clinical and Experimental, 29(1), 8-18. doi:10.1002/hup.2370
[49]
Pistell, P. J., Morrison, C. D., Gupta, S., Knight, A. G., Keller, J. N., Ingram, D. K., & Bruce-Keller, A. J. (2010). Cognitive impairment following high fat diet consumption is associated with brain inflammation. Journal of Neuroimmunology, 219(1), 25-32. doi:10.1016/j.jneuroim.2009.11.010
[50]
Rogers, P. J., Appleton, K. M., Kessler, D., Peters, T. J., Gunnell, D., Hayward, R. C.,... Ness, A. R. (2008). No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: A randomised controlled trial. British Journal of Nutrition, 99(2), 421-431. doi:10.1017/S0007114507801097
[51]
Giltay, E. J., Geleijnse, J. M., Heijboer, A. C., Goede, J., Griep, L. M. O., Blankenstein, M. A., & Kromhout, D. (2012). No effects of n-3 fatty acid supplementation on serum total testosterone levels in older men: The alpha omega trial. International Journal of Andrology, 35(5), 680-687. doi:10.1111/j.1365-2605.2012.01255.x
[52]
Din, J. N., Newby, D. E., & Flapan, A. D. (2004). Science, medicine, and the future: Omega 3 fatty acids and cardiovascular disease—fishing for a natural treatment. BMJ: British Medical Journal, 328(7430), 30-35.
[53]
Ebbesson, S. O. E., Risica, P. M., Ebbesson, L. O. E., Kennish, J. M., & Tejero, M. E. (2005). Omega-3 fatty acids improve glucose tolerance and components of the metabolic syndrome in alaskan eskimos: The alaska siberia project. International Journal of Circumpolar Health, 64(4), 396.
[54]
Leckie, R., Manuck, S., Bhattacharjee, N., Muldoon, M., Flory, J., & Erickson, K. (2014). Omega-3 fatty acids moderate effects of physical activity on cognitive function. Neuropsychologia, 59(1), 103-111. doi:10.1016/j.neuropsychologia.2014.04.018
[55]
Köbe, T., Witte, A. V., Schnelle, A., Lesemann, A., Fabian, S., Tesky, V. A.,... & Flöel, A. (2016). Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage, 131, 226-238.
[56]
Smith, J. C., Nielson, K. A., Antuono, P., Lyons, J. A., Hanson, R. J., Butts, A. M., & Verber, M. D. (2013). Semantic memory functional MRI and cognitive function after exercise intervention in mild cognitive impairment. Journal of Alzheimer's Disease, 37(1), 197-215.
[57]
Taubert, M., Lohmann, G., Margulies, D. S., Villringer, A., & Ragert, P. (2011). Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage, 57(4), 1492-1498.
[58]
Eyre, H. A., Acevedo, B., Yang, H., Siddarth, P., Van Dyk, K., Ercoli, L.,... Lavretsky, H. (2016). Changes in neural connectivity and memory following a yoga intervention for older adults: A pilot study. Journal of Alzheimer's Disease: JAD, 52(2), 673.
[59]
Sala, S., Agosta, F., Pagani, E., Copetti, M., Comi, G., & Filippi, M. (2012). Microstructural changes and atrophy in brain white matter tracts with aging. Neurobiology of Aging, 33(3), 488-498.e2. doi:10.1016/j.neurobiolaging.2010.04.
[60]
de Groot, M., Ikram, M. A., Akoudad, S., Krestin, G. P., Hofman, A., van der Lugt, A., Vernooij, M. W. (2015). Tract-specific white matter degeneration in aging: The Rotterdam study. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 11(3), 321-330. doi:10.1016/j.jalz.2014.06.011
[61]
Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M., & Buckner, R. L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924-935. doi:10.1016/j.neuron.2007.10.038
[62]
Damoiseaux, J. S., Smith, S. M., Witter, M. P., Sanz-Arigita, E. J., Barkhof, F., Scheltens, P.,... Rombouts, S. A. R. B. (2009). White matter tract integrity in aging and alzheimer's disease. Human Brain Mapping, 30(4), 1051-1059. doi:10.1002/hbm.20563
[63]
Andreasen, N., & Blennow, K. (2005). CSF biomarkers for mild cognitive impairment and early Alzheimer's disease. Clinical neurology and neurosurgery, 107(3), 165-173.
[64]
Wolk, D. A., Zhang, Z., Boudhar, S., Clark, C. M., Pontecorvo, M. J., & Arnold, S. E. (2012). Amyloid imaging in Alzheimer's disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. Journal of Neurology, Neurosurgery & Psychiatry, jnnp-2012.
[65]
Foster, N. L., Heidebrink, J. L., Clark, C. M., Jagust, W. J., Arnold, S. E., Barbas, N. R.,... & Minoshima, S. (2007). FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain, 130(10), 2616-2635.
[66]
Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral cortex, 19(1), 72-78.
[67]
Yan, H., Zuo, X. N., Wang, D., Wang, J., Zhu, C., Milham, M. P.,... & Zang, Y. (2009). Hemispheric asymmetry in cognitive division of anterior cingulate cortex: a resting-state functional connectivity study. Neuroimage, 47(4), 1579-1589.
[68]
Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., & Buckner, R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. Journal of neurophysiology, 96(6), 3517-3531.
[69]
De Leon, M. J., George, A. E., Kluger, A., Franssen, E., Ferris, S. H., & Wolf, A. P. (1989). PET-deoxyglucose, CT, and neuropathology of age-related white matter pathology in normals and Alzheimer's patients. Psychiatry research.
[70]
Coutinho, A., Porto, F. H., Zampieri, P. F., Otaduy, M. C., Perroco, T. R., Oliveira, M. O.,... & Buchpiguel, C. A. (2015). Analysis of the posterior cingulate cortex with [18 F] FDG-PET and Naa/mI in mild cognitive impairment and Alzheimer's disease: Correlations and differences between the two methods. Dementia & Neuropsychologia, 9(4), 385-393.
[71]
Mosconi, L. (2005). Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. European journal of nuclear medicine and molecular imaging, 32(4), 486-510.
[72]
Deeny, S. P., Winchester, J., Nichol, K., Roth, S. M., Wu, J. C., Dick, M., & Cotman, C. W. (2012). Cardiovascular fitness is associated with altered cortical glucose metabolism during working memory in ɛ4 carriers. Alzheimer's & Dementia, 8(4), 352-356.
[73]
Ferreira, L. K., Tamashiro-Duran, J. H., Squarzoni, P., Duran, F. L., Alves, T. C., Buchpiguel, C. A., & Busatto, G. F. (2014). The link between cardiovascular risk, Alzheimer's disease, and mild cognitive impairment: support from recent functional neuroimaging studies. Revista Brasileira de Psiquiatria, 36(4), 344-357.
[74]
Souto Barreto, P., Andrieu, S., Payoux, P., Demougeot, L., Rolland, Y., & Vellas, B. (2015). Physical Activity and Amyloid‐β Brain Levels in Elderly Adults with Intact Cognition and Mild Cognitive Impairment. Journal of the American Geriatrics Society, 63(8), 1634-1639.
[75]
Espiritu, J. R. D. (2008). Aging-related sleep changes. Clinics in Geriatric Medicine, 24(1), 1-14. doi:10.1016/j.cger.2007.08.007
[76]
Crowley, K. (2011). Sleep and sleep disorders in older adults. Neuropsychology Review, 21(1), 41-53. doi:10.1007/s11065-010-9154-6
[77]
Foley, D. J., Vitiello, M. V., Bliwise, D. L., Ancoli-Israel, S., Monjan, A. A., & Walsh, J. K. (2007). Frequent napping is associated with excessive daytime sleepiness, depression, pain, and nocturia in older adults: Findings from the national sleep foundation ‘2003 sleep in america’ poll. The American Journal of Geriatric Psychiatry, 15(4), 344-350. doi:10.1097/01.JGP.0000249385.50101.67
[78]
Bliwise, D. L. (1993). Sleep in normal aging and dementia. Sleep, 16(1), 40-81.
[79]
Prinz, P., Vitaliano, P., Vitiello, M., Bokan, J., Raskind, M., Peskind, E., & Gerber, C. (1982). sleep, eeg and mental function changes in senile dementia of the alzheimer type. Neurobiology of Aging, 3(4), 361-370.
[80]
Satlin, A., Volicer, L., Stopa, E. G., & Harper, D. (1995). Circadian locomotor activity and core-body temperature rhythms in alzheimer's disease. Neurobiology of Aging, 16(5), 765-771. doi:10.1016/0197-4580(95)00059-N
[81]
Hatfield, C. F., Herbert, J., Van Someren, E. J. W., Hodges, J. R., & Hastings, M. H. (2004). Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early alzheimer's dementia. Brain, 127(5), 1061-1074. doi:10.1093/brain/awh129
[82]
Fetveit, A., & Bjorvatn, B. (2006). Sleep duration during the 24‐hour day is associated with the severity of dementia in nursing home patients. International Journal of Geriatric Psychiatry, 21(10), 945-950. doi:10.1002/gps.1587
[83]
Fox, N. C., Warrington, E. K., Freeborough, P. A., Hartikainen, P., Kennedy, A. M., Stevens, J. M., & Rossor, M. N. (1996). Presymptomatic hippocampal atrophy in Alzheimer's disease. Brain, 119(6), 2001-2007.
[84]
Ju, Y., Lucey, B., & Holtzman, D. (2014;2013;). Sleep and alzheimer disease pathology-a bidirectional relationship. Nature Reviews Neurology, 10(2), 115-119. doi:10.1038/nrneurol.2013.269
[85]
Iranzo, A., Tolosa, E., Gelpi, E., Molinuevo, J. L., Valldeoriola, F., Serradell, M.,... Santamaria, J. (2013). Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: An observational cohort study. The Lancet Neurology, 12(5), 443-453. doi:10.1016/S1474-4422(13)70056-5
[86]
Roh J. H., Huang Y., Bero A. W., Kasten T., Stewart F. R., Bateman R. J., & Holtzman D. M.: Disruption of the Sleep-Wake Cycle and Diurnal Fluctuation of β- Amyloid in Mice with Alzheimer’s Disease Pathology. Sci Transl Med 2012, 4:150ra122.
[87]
Jackson, C. E., & Snyder, P. J. (2008). Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild alzheimer's disease. Alzheimer's and Dementia, 4(1), S137-S143. doi:10.1016/j.jalz.2007.10.008
[88]
Prichep, L. S., John, E. R., Ferris, S. H., Rausch, L., Fang, Z., Cancro, R.,... Reisberg, B. (2006). Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiology of Aging, 27(3), 471-481. doi:10.1016/j.neurobiolaging.2005.07.021
[89]
Mistlberger, R. E., & Skene, D. J. (2005). Nonphotic entrainment in humans? Journal of Biological Rhythms, 20(4), 339-352. doi:10.1177/0748730405277982
[90]
Youngstedt, S. D., O'Connor, P. J., & Dishman, R. K. (1997). The effects of acute exercise on sleep: A quantitative synthesis. Sleep, 20(3), 203-214.
[91]
McDonnell, M. N., Buckley, J. D., Opie, G. M., Ridding, M. C., & Semmler, J. G. (2013). A single bout of aerobic exercise promotes motor cortical neuroplasticity. Journal of Applied Physiology, 114(9), 1174-1182. doi:10.1152/japplphysiol.01378.2012
[92]
Pin-Barre, C., & Laurin, J. (2015). Physical exercise as a diagnostic, rehabilitation, and preventive tool: Influence on neuroplasticity and motor recovery after stroke. Neural Plasticity, 2015, 608581.
[93]
Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A.,... Craft, S. (2010). Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for alzheimer's disease. Journal of Alzheimer's Disease, 22(2), 569-579. doi:10.3233/JAD-2010-100768
[94]
Nagamatsu, L. S., Chan, A., Davis, J. C., Beattie, B. L., Graf, P., Voss, M. W.,... Liu-Ambrose, T. (2013). Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: A 6-month randomized controlled trial. Journal of Aging Research, 2013, 861893-10. doi:10.1155/2013/861893
[95]
Landry, G., & Liu-Ambrose, T. (2014). Buying time: A rationale for examining the use of circadian rhythm and sleep interventions to delay progression of mild cognitive impairment to alzheimer's disease. Frontiers in Aging Neuroscience, 6, 325. doi:10.3389/fnagi.2014.00325
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931