Quartz Veins Characteristics and Au Mineralization Within the Batouri Au District, East Cameroon
Science Research
Volume 3, Issue 4, August 2015, Pages: 137-149
Received: May 28, 2015; Accepted: Jun. 12, 2015; Published: Jun. 30, 2015
Views 4796      Downloads 134
Authors
Mero Yannah, Institute of Geological and Mining Research, Yaounde, Cameroon
Cheo Emmanuel Suh, Department of Geology, University of Buea, Buea, Cameroon
Mboudou Germain M. Mboudou, Department of Geology, University of Buea, Buea, Cameroon
Article Tools
Follow on us
Abstract
The Batouri south Au district of East Cameroon is hosted by biotite-amphibole meta-granites that belong to the Pan-African group of Pre-to Syn D1 and D2 Neoproterozoic granitoids. Hydrothermal activity and Au mineralization in this area is greatly enhanced by the presence of fractures, foliations, faults (sinistral) and vein splays hosted within a foliated meta-granite basement. Thirteen samples of 1.00 kg each of quartz vein were crushed and panned for Au-grain recovery. Fire Assay geochemistry was used to analyze eighteen samples for Au. Field results identified foliated and non-foliated GQV/BQV quartz vein varieties. The mineralization style in the area is mainly by fracture filled. Disseminated Au is common in the weathered wall rock envelop associated with mineralized veinlets. Au-grade from fire assay geochemistry varies from ~0.056 g/t to 2.844 g/t similar to 3-4 g/t Au-grade from field analysis associated with the GQV veinlets and weathered wall rock. The highest Au-grade was obtained from the foliated variety of GQV (QV2). Recovered Au-grains varied in shape and sizes (102-392 μm).
Keywords
Quartz Veins, Au Mineralization, Batouri South-Cameroon
To cite this article
Mero Yannah, Cheo Emmanuel Suh, Mboudou Germain M. Mboudou, Quartz Veins Characteristics and Au Mineralization Within the Batouri Au District, East Cameroon, Science Research. Vol. 3, No. 4, 2015, pp. 137-149. doi: 10.11648/j.sr.20150304.12
References
[1]
Pitfield, P.E.J., Campbell, D.G., 1996. Significance for Au exploration and structural style of auriferous deposits in the Archaean Bulawayo-Bubi greenstone belt of Zimbabwe; Transactions of Mining and Metallurgy, Section B. Applied Earth Sciences 105, 41-52.
[2]
Catheline, M., Marignac, C., Boiron, M.C., Poty, B., 1991. Herynian Au bearing quartz veins from Western Europe: the “shear zone model” revisited. Proceeding of Au. Brazil Balkema 91, 115-119.
[3]
Harraz, H.Z., 1999. Wall rock alteration, Atud Au Mine, Eastern Desert, Egypt: Process and P-T-X CO2 conditions for mineralization..Journal of African Earth Sciences 28, 527-551.
[4]
Bouchot, V., Milesi, J.P., Ledru, P., Lerouge, C., Roig, J.Y., Bellot, J.P., Becq-Girdon, J.F., Truffert, C., 2000. OrogenicAu veins and W, Li-F mineralization related to “specialized” granites; two markers of the crustal scale -W. Sb metaliferous peak at 310-305 Ma (French Variscan Belt). In: A GEODE-GEOFRANCE 3D workshop on orogenic Au deposits in Europe with emphasis on the Variscides, Bouchot, V., Moritz, R. (eds). Orleans, 53-55.
[5]
Nicaud, J., Floc’h, J.P., 2000. Structural control of Au bearing quartz veins forming in the Saint Yrieix District (Massif Central France). In: A GEODE-GEOFRANCE 3D workshop on orogenic Au deposit in Europe with emphasis on the Variscides, Bouchot, V., Moritz, R. (eds), Orléans 71-72.
[6]
Simard, M., Bedoin, G., Bernard, J., Hupé, A., 2006. Metallogeny of the Mont-de-L’Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada. Mineralium Deposita 41, 607-636.
[7]
Kreuzer, O.P., 2006. Textures, paragenesis and wall rock alteration of lode Au deposits in the Charter Towers district, North Queensland: implication for the conditions of ore formation. Mineralium Deposita 40, 639-663.
[8]
Junks, A.J., Cooke, D.R., 2007. Geological and structural controls on Au mineralization in the Tanami district Northern Territory 42, 107-126.
[9]
El Bouseily, A.M., El Dahhar, A., Arselan, A.I., 1985. Ore microscopy and geochemical characteristics of Au-bearing sulphide minerals, El Sid Au Mine, eastern Desert, Egypt. Mineralium Deposita 20, 194-200.
[10]
Hilmy, M.E., Osman, A., 1989. Remobilization of Au from a chalcopyrite-pyrite mineralization, Hamash Au mine southeastern desert, Egypt. Mineralium Deposita 24, 244-249.
[11]
Harraz, H.Z., Hassanen, M.A., El Dahhar, M.A., 1992. Fluid inclusions and stable isotopic studies at the El Sid Au mine, eastern Desert, Egypt. Egyptian Journal of Geology 36, 323-343.
[12]
Williams, P.J., Barton, M.D., Johnson, D.A., Fontabe, L., de Haller, A., Mark, G., Oliver, N.H.S., Marshik, R., 2005. Iron oxide-copper-Au deposits. Geology, space, time, distribution and possible modes of origin. Economic Geology 100, 371-405.
[13]
Coulibaly, Y., Boiron, M.C., Catheline, M., Kouamelan, A.N., 2008. Fluid immiscibility and Au deposition in the Birimian quartz veins of the Angoviadeposit (Yaouré, Ivory Coast). Journal of African Earth Sciences 50, 234-254.
[14]
Barret, T.J., MacLean, W.H., 1994. Chemo-stratigraphy and hydrothermal alteration in exploration for VHM deposits in greenstone and younger volcanic rocks. In: Alteration and alteration process associated with ore forming systems, Lentz, D.R. (eds). Geological Association of Canada Short courses notes Toronto, Ontario 11, 433-467.
[15]
Beirlein, F.P., Fuller, T., Stuwe, K., Arne, D.C., Keays, R.R., 1998. Wall rock alteration associated with turbidite-hosted Au deposit. Example from the Palaeozoic Lachlan fold belt in Central Victoria, stralia. Ore Geology Review 13, 345-380.
[16]
Vallance, J., Boiron, M.C., Catheline, M., Verlet, M.,Marignac, C., 2004. The granitic hosted Au deposit of Moulin de Chéni (Saint Yrieix district, Massif Central France): petrography, structural, fluid inclusion and oxygen isotope constraints. Mineralium Deposita 39, 265-281.
[17]
Suh, C.E. (2008): Sulphide microchemistry and hydrothermal fluid inclusion in quartz veins Batouri gold district (Southern Cameroon).journal of the Cameroon Academy of Science 8, 19-29.
[18]
Sherlock, R.L., Barrett, T.J., Lewis, P.D., 2003. Geological setting of the Rapu Rapu Au-rich volcanogenic sulphide deposits, Albay Province, Phillippines. Mineralium Deposita 38,813-830.
[19]
Kreuzer, O.P., 2003. Structure, timing and genesis of auriferous quartz veins in the Charters Towers Au field, north Queensland: implication for exploration and prospectively. PhD thesis, James Cook University, Townville.
[20]
Oliver, N.H.S., Cleverley, J.S., Mark, G., Pollard, P.J., Fu, B., Marshall, L.J., Rubenach, M.J., Williams, P.J., Barker, T. 2004. Modeling the role of sodic alteration in the genesis of iron oxide-copper-Au deposits, eastern Mount Isa block, stralia. Economic Geology 99, 1145-1176.
[21]
Haeberlin, Y., Moritz, R., Frontbote, L., Cosca, M., 2004. Carboniferous OrogenicAu deposits at Pataz, eastern Andean Cordillera, and Peru: geological and structural framework, paragenesis, alteration and 40Ar/39Ar geochronology. Economic Geology 99, 73-112.
[22]
Toteu, S, F., Van schmus, W.R., Penaye, J.M. and Michard, A. (2001): New U-Pb and Sm-Nd data from north central Cameroon and its’ bearing on the Pre-Pan-African history of Africa. Precambrian Research 108, 45-73.
[23]
Ngako, V., Affaton, P., Nnange, J.M., Njanko, T.H., 2003. Pan-African tectonic evolution in the central and southern Cameroon: trans-pression and trans-tension during sinistral shear movements. Journal of African Earth Sciences 36, 207-214.
[24]
Njonfang E., Ngako V., Moreau C., Affaton P., Diot H., 2008. Restraining bends in high temperature shear zones: The ‘‘Central Cameroon Shear Zone”, Central, Africa Journal of African Earth Sciences 52, 9–20.
[25]
Hafner, B., 2006. Energy Dispersive Spectrometry on the SEM: a primer. Characterization Facility, University of Minnesota—Twin Cities, p26.
[26]
Hoffman Eric, L., Clark John, R. & Yeager James, R. 1998. Gold Analysis – Fire Assaying and Alternative Methods. Explor. Mining Geology, 7:155-160.
[27]
Asaah, A. V., 2010. Lode gold mineralization in the Neoproterozoic granitoids of Batouri, southeastern Cameroon, PhD dissertation, Faculty of Energy and Economic Sciences, Clausthal University of Technology, p202.
[28]
Brito Neves, B.B., Van Schmus, W.R., Fetter, A., 2002. North western, Africa-north, east Brazil: major tectonic links and correlation problems. Journal of African Earth Sciences 34, 275-278.
[29]
Coutinho, M.G.N., Alderton, M.D.H., 1998. Character and genesis of Proterozoic shear zone-hosted Au deposit in Boborema Province, northeast Brazil. Transactions of the institution of Mining and Metallurgy. Section B, Applied Earth Science 107, 66-109.
[30]
Klein, E.L., Alves dos Santos, R., Fuzikawa, K., Angelica, R.S., 2001. Hydrothermal fluid evolution and structural control of the Guarim Au mineralization, Tapajos Province, Amazonian craton, Brazil. Mineralium Deposita 36, 149-164.
[31]
Rhys, D., DiMarchi, J., Smith, M., Friesen, R., Rombach, C., 2003. Structural setting, style and timing of vein-hosted Au mineralization at the Pogo Deposit, east central Alaska. Mineralium Deposita 38, 863-875.
[32]
McCuaing, T.C., Kerrich, R., 1998. P-T-t deformation fluid characteristics of lode Au deposits; evidence from alteration systematics. Ore Geology Review 12, 381-453.
[33]
Boiron, M.C., Barakat, A., Catheline, M., Banks, D.A., Durisova, J., Moravek, P., 2001. Geometry and surficial fluids during the uplift of the Hercynianupper crust: consequence for Au deposition. Chemical Geology 173, 207-225.
[34]
Tourigny, G., Tremblay, A., 1997. Origin and incremental evolution of brittle/ductile shear zone in granitic rocks: natural examples from the southern Abitibi Belt, Canada. Journal of Structural Geology 19, 15-27.
[35]
Robert, Boullier, A.M., Firdaous, K., 1995.Au quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. Journal of Geophysical Research 100 (B7), 12861-12879.
[36]
Murphy, P.J., Roberts, S., 1997. Evolution of a metamorphic fluid and its role in lode Au mineralization in the central Iberian Zone. Mineralium Deposita 28,469-481.
[37]
Hagemann, S.G., Groves, D.I., Ridley, J.R.,Vearncombe, J.R., 1992. The Archaean lode Au deposits. European Journal of Mineralogy 8, 937-960.
[38]
Jebrak, M., 1997. Hydrothermal breccias in vein-type ore deposit: a review of mechanism, morphology and size distribution. Ore Geology Review 12, 1127-1136.
[39]
Sibson, R.H., 2004. Control on maximum fluid overpressure defining conditions for mesothermal mineralization. Journal of Structural Geology 26, 1127-1136.
[40]
Stendal, H., Frei, R., Hamilton, M.A., Mueller, W.U., 2001. The Palaeoproterozoic Kangerluluk Au-copper mineralization (southeastern Greenland): Pb and Nd isotopic constraints on its timing and genesis. Mineralium Deposita 36, 177-188.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186