Origin and Tectonic Framework of the Ngovayang Iron Massifs, South Cameroon
Science Research
Volume 4, Issue 1, February 2016, Pages: 11-20
Received: Jan. 11, 2016; Accepted: Feb. 3, 2016; Published: Feb. 23, 2016
Views 4580      Downloads 132
Authors
Ndong Bidzang Francois, Institut of Geological and Mining Research, Yaounde, Cameroon; Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
Sobdjou Kemteu Christel, Institut of Geological and Mining Research, Yaounde, Cameroon; Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
Mero Yannah, Institut of Geological and Mining Research, Yaounde, Cameroon
Ntomba Martial Sylvestre, Institut of Geological and Mining Research, Yaounde, Cameroon; Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
Nzenti Jean Paul, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
Mvondo Ondoa Joseph, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
Article Tools
Follow on us
Abstract
The Ngovayang massifs belong to the Paleoproterozoic Nyong unit complex located in the north western edge of the Congo Craton of southern Cameroon. It consists of granitoids and a banded series. The banded series presents the petrographic and geochemical characteristics of greenstone belts similar to those of Sao Francisco Craton in Brazil. Pervious works in this area involved geochemical (% Fe), mineralogical (hematite/magnetite) and geophysical characterization of the formation ores. The sedimentary and tectonic events related to the ore emplacement are poorly understood and has an effect on the exploitation of these ores in Cameroon. The objective of this work is to generate new petrographic and geochemical data of the Ngovayang massifs, and to determine the origin and emplacement process that favored the accumulation of these iron-bearing ferruginous quartzites in the study area. Polished thin sections were produced and observed using a scanning electron microscope at the Centre for Microscopy and Microanalysis, University of Western Australia CMM-UWA. Geochemical analysis of major and trace elements were carried out using XRF and ICP/MS in OMAC laboratory of Ireland. The results showed that the iron formation of the Ngovayang area composed of ferruginous and banded ferruginous quartzites series. Quartz, hematite and aluminosilicates occur as the main minerals associated with the ferruginous quartzite series. Geochemically, these ferruginous facies are very rich in Fe and Si but poor in other elements. Platy and massive type of mineralization were common with the hematites and are indicative of either metasomatic (or hydrothermal) origin and lateritic through meteoric water circulation. Three phase mineralization were identified from microscopic study: early Syn-sedimentary phase linked to the sedimentation of BIFs, a secondary tectonics phase and a tertiary phase related to weathering. The Ngovayang iron formations are characteristic of the lake superior-type.
Keywords
Ngovayang Massif, Lake Superior, Metasomatism, Ferruginous Quartzites, BIF
To cite this article
Ndong Bidzang Francois, Sobdjou Kemteu Christel, Mero Yannah, Ntomba Martial Sylvestre, Nzenti Jean Paul, Mvondo Ondoa Joseph, Origin and Tectonic Framework of the Ngovayang Iron Massifs, South Cameroon, Science Research. Vol. 4, No. 1, 2016, pp. 11-20. doi: 10.11648/j.sr.20160401.13
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Nsifa, N. E., Tchameni, R., Nédélec, A., Siqueira, R., Pouclet, A., Bascou, J., 2013. Structure and petrology of Pan-African nepheline syenites from the South West Cameroon; Implications for their emplacement mode, petrogenesis and geodynamic significance. Journal of African Earth Sciences 87, 44–58.
[2]
Ebah, A. S. A., Ndjigui, P. D., Beyann, A. A., Teutsong, T., Bilong, P., 2012. Geochemistry of pyroxénites, amphibolites and their weathered products in the Nyong unit, SW Cameroon (NW border of Congo craton): implication for Au-PGE exploration. Journal of Geochemical exploration Vol. 114-Mars 1.
[3]
Nsoh, E. F., Agbor, A. K., Etame, J., Suh, E. C., 2014. Ore-textures and geochemistry of the Nkout iron deposit, South East Cameroon. Sciences, Technologies et Développement, Volume 15, pp 43-52.
[4]
Vicat, J. P., 1998. Bilan des connaissances acquises sur les séries de Dja (Cameroun), Nola(Centrafrique) et Sembe-Ouesso (Congo. In: Vicat J. P. et Bilong P. éd., Géosciences au Cameroun, Collect. GEOCAM, 1/1998, Press. Univ. Yaoundé, pp. 369-383.
[5]
Nédéleck, A., Nsifa, E. N., Martin, H., 1990. Major and trace element geochemistry of The Archean Ntem plutonic complex (South Cameroun): Petrogenesis and crustal evolution Precambrian Res., 35-50.
[6]
Toteu, S. M., Van Schmus, W. R. Penaye, J. and Nyobe, J. B., 1994. U-pb and Sm-Nd evidence for Eburnian and Pan-african high-grade metamorphism in cratonic rocks of Southern Cameroon. Prec. Res, 67, 321-347.
[7]
Minyem, D. and Nédélec A., 1990. Origin and evolution of the Eseka gneisses (Cameroon). Archean TTG reworked in the panafrican mobile belt. Inc: 15th, coll. Geol. Afr., Nancy, Publ. Occas. CIFEG, 2. Etude récente sur la géologie de l’Afrique 21-24.
[8]
Taylor, S. R., 1964: Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 28(8): 1273-85.
[9]
Gromet, L. P., Dymek, R. F., Haskin, L. A., Korotev, R. L., 1984. The "North American Shale Composite", its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 48, 2469-2482.
[10]
Bronner, G., Chauvel, J. J., Triboulet, C., 1990a. Geochemistry and knowledge of banded iron formations: The Western African Shield, an example. in Ancient banded iron formations (Regional presentations), Theophrastus Publ., Athens, Greece, p. 135 156.
[11]
Ngoumou, P. C., Ndougsa, M. T., Assembe, S. P., Kofane, T. C., 2014. Evidence of iron mineralization channels in the Messondo Area (Centre – Cameroon) using Geoelectrical (DC&IP) methods: a case study. Int. Jour. of Geosciences, 5, 346-361.
[12]
Cesar, A. C., Varajao., Ary, B., Erick, R., Ramanaidou., Robert, J. G., 2002. Microporosity of BIF hosted massive hematite ore, Iron Quadrangle, Brazil. Anais da Academia Brasileira de Ciências 74(1): 113–126.
[13]
Lerouge, C., Cocherie, A., Toteu, S. F., Milesi, J. P., Penaye, J., Tchameni, R., Nsifa, N. E., Fanning, C. M., 2006. SHRIMP U–Pb zircon dating for the Nyong Series, South West Cameroon. J. Afric. Earth Sci. 44 (4–5), 413–427.
[14]
Shang, C. K., Wolfgang, S., Muharrem, S., Funken, C., Mvondo Ondoa, J., 2004b. Zircon Pb-Pb and U-Pb systematics of TTG rocks in the Congo Craton: constraints on crust formation, magmatism, and Pan-African lead loss. Bull. Geos. 79 (4), 205–219.
[15]
Thibaut, P. M., Ralay, F., 2001. Inventaire des minières de fer de la Haute-Marne. Etat d'avancement des travaux réalisés en 2001. Rapport BRGM/RP- 51372-FR
[16]
Dorr, J. V. N., Barbosa, A. L. M., 1963. Geology and ore deposits of the Itabira district. US Geol Surv Prof Pap 109, p. 341-C.
[17]
Dorr, J. V. N., 1965. Nature and origin of the high-grade hematite ores of Minas Gerais, Brazil. Econ Geol 60: 1-46.
[18]
Guild, P. W., 1953. Iron deposits of the Congonhas District, Minas Gerais. Econ Geol 48: 639-676.
[19]
Bidzang, F. N., Messi, E. J. O., Ntomba, S. M., Akam, M. J., Ondoa, M. J., 2015. Contribution of satellite lineaments to search for gold showings of Eburnean massive Ngovayang south Cameroon (Craton of Congo). International Journal of Innovation and Applied Studies. 13(2), 368-376.
[20]
Harder, E. C., Chamberlin, R. T.; 1915. The geology of central Minas Gerais, Brazil. Jour Geol Part I 23: 341-378 and Part II 23: 385-424.
[21]
Sanders, B. H., 1933. Iron ores at Itabira Brazil. Inst of Min and Met Bull 396: 1-23.
[22]
James, H. L., 1954. Sedimentary facies of iron formations. Econ Geol 49: 236-293.
[23]
Klein, C., Beukes, N. J., 1992. Proterozoic iron formation. In: Kondie KC (ed.); Proterozoic crustal evolution, Amsterdam: Elsevier, p. 383-418.
[24]
Ramanaidou, E., Nahon, D., Decarreau, A., Melfi, A. J., 1996. Hematite and goethite from duricrusts developed by lateritic chemical weathering of Precambrian banded iron formations, Minas Gerais, Brazil. Clays and Clay Minerals 44: 22-31.
[25]
Ngaha, P. R. N., 1984. Contribution à l’étude géologique, stratigraphique et structurale de la bordure du bassin Atlantique du Cameroun. Thèse Doct. 3ème Cycle, Univ. de Yaoundé, 131p.
[26]
Besnus, Y., 1977. Etude géochimique comparative de quelques gisements supergènes de fer. Thèse Université Louis Pasteur de Strasbourg (France), 101 p.
[27]
Jacobson, R. L., Usdowski, E., 1975. Geochemical controls on a calcite precipitatingspring. Contrib. Mineral. Petrol., 51: 65.
[28]
El Hadj, H., 2002. Les minéralisations aurifères dans les formations ferrifères d'Aouéouat, Tasiast, Mauritanie. Mémoire de Maîtrise, 229 p. Université du Québec à Montréal (UCAM).
[29]
Canuto, V. M., J. S. Levine, T. R. Augustsson, C. L. Imhoff, and M. S. Giampapa, 1983: The young Sun and the atmosphere and photochemistry of the early Earth. Nature, 305, 281-286.
[30]
Pickard, A. L., SHRIMP U-Pb Zircon Ages of Tuffaceous mudrocks in the Brockman Iron Formation of Hamersley Range, Western Australia. Australian Journal of Earth Sciences, Vol. 49, No. 3, pp. 491-507.
[31]
Zeev, L., 2011. Banded Iron Formations (BIFs) and Associated Sediments Do Not Reflect the Physical and Chemical Properties of Early Precambrian Seas: International Journal of Geosciences, 2012, 3, 226-236
[32]
Kasting, J. F., 1993. Earth’s early atmosphere, Science. 259, 920-926.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186