Output Prediction of Photovoltaic Power Station Based on Nonlinear Combined Model
Science Discovery
Volume 4, Issue 6, December 2016, Pages: 353-359
Received: Nov. 22, 2016; Published: Nov. 24, 2016
Views 1309      Downloads 49
Authors
Xi Fang, Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, xi’an, China
An Yuan, Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, xi’an, China
Yao Jiang, Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, xi’an, China
Wei Qian, Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, xi’an, China
Wang Yuyao, Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, xi’an, China
Article Tools
Follow on us
Abstract
The output prediction of photovoltaic (PV) power station is necessary because the weather, environment and seasonal factors lead to the unstable PV power generation, which will affect the planning and scheduling of power system. Compared with the single model method, the linear combination method could improve the prediction accuracy of the output of PV power station. However, the linear combination forecast method is a simple convex combination of different prediction methods and is lack of general applicability. This paper presents a nonlinear combination method based on BP neural network and ARMA model to predict the output of PV power plant. This method based on the nonlinear relationship between the results of two single prediction models and the actual value, and utilize the nonlinear fitting ability of BP neural network, predicted the power generation capacity of PV power station. The nonlinear prediction theory and algorithm are given at the end of the article, and also compare nonlinear combined model with linear combined model of the power plant output prediction, the results show that the proposed method has a high accuration and an extensive applicability.
Keywords
PV Power Station, Output Prediction, BP Neural Network Model, ARMA Model, Nonlinear Combination Model
To cite this article
Xi Fang, An Yuan, Yao Jiang, Wei Qian, Wang Yuyao, Output Prediction of Photovoltaic Power Station Based on Nonlinear Combined Model, Science Discovery. Vol. 4, No. 6, 2016, pp. 353-359. doi: 10.11648/j.sd.20160406.11
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186