The Dynamics Analysis of Multiscale Eigenelement Method on Periodic Composite Materials
Science Discovery
Volume 5, Issue 6, November 2017, Pages: 404-409
Received: Oct. 25, 2017; Published: Oct. 27, 2017
Views 883      Downloads 43
Authors
Wu Mengmeng, College of Science, Naval University of Engineering, Wuhan, China
Jia Ruiyu, Municipal and Traffic Engineering Design Institute, Changjiang Institute of Survey Planning Design and Research, Wuhan, China
Article Tools
Follow on us
Abstract
As the composite materials and structures are widely used in aerospace, it is necessary to develop more precise and higher efficient methods to predict the mechanical properties and behaviors of the composites for application. The multiscale eigenelement method (MEM) can be implemented to analysize the periodic composite materials. This paper has reserched the MEM accuracy and mechanical behavior, and deduced the dynamics analytical solution of periodic composite materials. Compared the influence to the accuracy of different model numbers. As for the problems of multiscale eigenelement method, we put forward unit cell modal method. The results of the numerical calculation indicate the effectiveness and feasibility of the unit cell modal method.
Keywords
Composite Materials, Multi-Scale Method, Eigen-Element Method, Unit-Cell
To cite this article
Wu Mengmeng, Jia Ruiyu, The Dynamics Analysis of Multiscale Eigenelement Method on Periodic Composite Materials, Science Discovery. Vol. 5, No. 6, 2017, pp. 404-409. doi: 10.11648/j.sd.20170506.11
References
[1]
Xing YF, Yang Y. An eigenelement method of periodical composite structures. Composite Structures 2011;93:502–512.
[2]
Xing YF, Yang Y, Wang XM. A multiscale eigenelement method and its application to periodical compositestructures. Composite Structures 2010; 92:2265–2275.
[3]
邢誉峰,杨阳.形函数分段定义的弯矩梁特征单元[J].力学学报,2008,40(2):222-228。
[4]
邢誉峰,田金梅.三维正交机织复合材料单胞特征单元及其应用[J].航空学报,2007,28(4):881-885。
[5]
田金梅.叠层和编织复合材料动态特性研究的新方法[D].北京:北京航空航天大学,2005。
[6]
Strouboulis T., Babuska I., Copps K. The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering 2000,47:1401-1417.
[7]
Xia Z. H., Zhou C. W., Yong Q. L., et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites [J]. International Journal of Solid and Structures, 2006, 43: 266-278.
[8]
Voigt W. Uberdie Beziehung zwischen den beiden Elastizitatskonst-anten isotroper Korper [J]. Wied Ann, 1889, 38: 573-587.
[9]
谢文剑,诸德超,邢誉峰.基于特征向量展开的编织复合材料的均匀化方法[C],第八届全国振动理论及应用学术会议论文集,上海,2003年11月。
[10]
Y. F. Xing, J. M. Tian, D. C. Zhuand W. J. Xie. The Homogenization Method Based on Eigenvector Expansions for Woven Fabric Composites [J]. International Journal for Multiscale Computational Engineering, 4(1) 197-206 (2006).
[11]
Xing Y. F., Du C. Y., An improved multiscale eigenelement method of periodical composite structures [J]. Composite Structures, 2014, 118, 200-207.
[12]
邢誉峰,高亚贺.渐进多尺度展开方法的精度和物理意义[J].计算力学学报,2016,33(4):504-508。
[13]
Liu H, Sun X, A hierarchical multilevel finite element method for mechanical analyses of periodical composite structures [J]. Composite Structures, 2015, 131, 115-127.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186