Research on Reflection and Rotation Features of Binomial Coefficient Distributions
Science Discovery
Volume 7, Issue 4, August 2019, Pages: 239-248
Received: Jul. 8, 2019; Published: Aug. 27, 2019
Views 27      Downloads 4
Authors
Zhu Minghan, School of Software, Yunnan University, Kunming, China
Zheng Jeffrey Zhijie, Yunnan Laboratory of Quantum Information, Kunming, China
Article Tools
Follow on us
Abstract
With the rapid development of frontier neural network, artificial intelligence and big data technology, the related theory and application research of combinatorial mathematics are more and more extensive. The application of binomial coefficient in combinatorial mathematics is an effective way to solve the research of information coding and quantum computation. Binomial coefficients and its distributions are the core topic in probability statistics, and there are many theories and applications related to them.In this paper, the quantification of binomial coefficients and the characteristic of reflection rotation transformation are studied using three-dimensional diagrams. Using variant construction, the combinatorial clustering properties are investigated applying binomial formulas and sample distributions and their combinatorial patterns are illustrated. It is proved that the basic binomial coefficient formula and its extended model have obvious properties of reflection and rotation invariance.
Keywords
Binomial Coefficient, Spatial Extension, Variant Construction, Reflection, Rotation
To cite this article
Zhu Minghan, Zheng Jeffrey Zhijie, Research on Reflection and Rotation Features of Binomial Coefficient Distributions, Science Discovery. Vol. 7, No. 4, 2019, pp. 239-248. doi: 10.11648/j.sd.20190704.21
References
[1]
Brualdi,R.A. 组合数学(原书第4版)[M]. 机械工业出版社:2005。
[2]
庞兴梅. 组合变换在等式、多项式及简单图中的应用[D]. 天津:南开大学,2009。
[3]
EvaPart-Enander. MATLAB 5手册[M]. 机械工业出版社:2000。
[4]
Cleve Moler. Experiments with MATLAB[M]. 北京航空航天大学出版社:2013。
[5]
尹社会. 利用伯努利系数表计算刚体转动惯量[R].高师理科学刊,2012,32(3)。
[6]
Knuth.D.E. 计算机编程的艺术(第4卷:组合算法,第1部分)[M]. 国防工业出版社,2011。
[7]
Morgan.F. 几何测度论[M]. 世界图书出版公司,2009。
[8]
吴军.数学之美[M]. 人民邮电出版社, 2012。
[9]
Knuth.D.E. 计算机编程的艺术(第1卷,第3版)[M]. 国防工业出版社,2002。
[10]
ZHENG Jeffrey Z. J. Variant Construction From Theoretical Foundations To Applications [M]. China: Springer, 2019: 39-50, 237-245. https://link.springer.com/book/10.1007/978-981-13-2282-2
[11]
ZHENG Jeffrey Z. J. A framework to express variant and invariant functional spaces for binary logic [J]. Front. Electr. Electron. Eng. China 5 (2), 163–172 (2010). Higher Educational Press and Springer.
[12]
赵熙强. Vandermonde卷积公式统一形式及其相应超几何变换[J]大连理工大学学报, 2000, 40(6)。
[13]
逯志宇. 基于对称旋转不变性的非圆相干分布源直接定位算法[J]电子与信息学报, 2019,41(3)。
[14]
王庆平. 计量逻辑学中的反射变换[J]模糊系统与数学, 2018,32(6)。
[15]
Kumar V. B. Efficient Computation of Binomial Coefficients Using Splay Trees [J]. International Journal on Data Science and Technology, 2016, 2 (1)。
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186