| Peer-Reviewed

First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe

Received: 8 September 2016    Accepted: 14 October 2016    Published: 10 November 2016
Views:       Downloads:
Abstract

We have calculated the structural, elastic, mechanical and electronic properties of cubic Hg0.5Cd0.5Te by using the first-principles density functional theory (DFT) within the local density approximation (LDA) plus virtual crystal approximation (VCA). Compared with the previous experimental and theoretical data of cubic Hg0.5Cd0.5Te, our calculated results demonstrate the adequacy of using the LDA+VCA for HgCdTe, which is expected to help people design new tellurium based multi-alloys using VCA.

Published in World Journal of Applied Physics (Volume 1, Issue 1)
DOI 10.11648/j.wjap.20160101.14
Page(s) 26-29
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Density Functional Theory, Electronic Structure, Elastic Properties, HgCdTe

References
[1] M. A. Berding, W. D. Nix, D. R. Rhiger, S. Sen, A. Sher, J. Electron. Mater. 29 (2000) 676.
[2] D. S. Bale, S. A. Soldner, C. Szeles, Appl. Phys. Lett. 92 (2008) 082101.
[3] G. Koley, J. Liu, K. C. Mandal, Appl. Phys. Lett. 90 (2007) 102121.
[4] C. Roux, E. Hadji, J.-L. Pautrat, Appl. Phys. Lett. 75 (1999) 3763.
[5] F. Yue, J. Shao, X. Lü, W. Huang, J. Chu, J. Wu, X. Lin, L. He, Appl. Phys. Lett. 89 (2006) 021912.
[6] A. Rogalski, Infrared Phys. Tech. 41 (2000) 213.
[7] J. Shao, L. Ma, X. Lü, W. Lu, J. Wu, F.-X. Zha, Y.-F. Wei, Z.-F. Li, S.-L. Guo, J.-R. Yang, L. He, J.-H. Chu, Appl. Phys. Lett. 93 (2008) 131914.
[8] D. Brun-Le Cunff, B. Daudin, J. L. Rouvière, Appl. Phys. Lett. 69 (1996) 514.
[9] W. J. McNeil, D. S. McGregor, A. E. Bolotnikov, G. W. Wright, R. B. James, Appl. Phys. Lett. 84 (2004) 1988.
[10] M. Chu, S. Terterian, D. Ting, C. C Wang, H. K. Gurgenian, S. Mesropian, Appl. Phys. Lett. 79 (2001) 2728.
[11] H. Y. Cui, Z. F. Li, Z. L. Liu, C. Wang, X. S. Chen, X. N. Hu, Z. H. Ye, W. Lu, Appl. Phys. Lett. 92 (2008) 021128.
[12] D. Donetsky, G. Belenky, S. Svensson, S. Suchalkin, Appl. Phys. Lett. 97 (2010) 052108.
[13] M. K. Haigh, G. R. Nash, N. T. Gordon, J. Edwards, A. Graham, J. Giess, J. E. Hails, M. Houlton, Appl. Phys. Lett. 86 (2005) 011910.
[14] F. X. Zha, S. M. Zhou, H. L. Ma, F. Yin, B. Zhang, T. X. Li, J. Shao, X. C. Shen, Appl. Phys. Lett. 93 (2008) 151113.
[15] P. Boieriu, C. H. Grein, S. Velicu, J. Garland, C. Fulk, S. Sivananthan, A. Stoltz, L. Bubulac, J. H. Dinan, Appl. Phys. Lett. 88 (2006) 062106.
[16] Y. Chang, C. H. Grein, J. Zhao, C. R. Becker, M. E. Flatte, P.-K. Liao, F. Aqariden, S. Sivananthan, Appl. Phys. Lett. 93 (2008) 192111.
[17] F. X. Zha, J. Shao, J. Jiang, W. Y. Yang, Appl. Phys. Lett. 90 (2007) 201112.
[18] J. Shao, L. Chen, W. Lu, X. Lü, L. Q. Zhu, S. L. Guo, L. He, J. H. Chu, Appl. Phys. Lett. 96 (2010) 121915.
[19] Y. Chang, G. Badano, E. Jiang, J. W. Garland, J. Zhao, C. H. Grein, S. Sivananthan, J. Crystal Growth 277 (2005) 78.
[20] J. R. Lindle, W. W. Bewley, I. Vurgaftman, J. R. Meyer, M. L. Thomas, E. C. Piquette, D. D. Edwall, W. E. Tennant, Appl. Phys. Lett. 90 (2007) 241119.
[21] B. C. Fodness, P. W. Marshall, R. A. Reed, T. M. Jordan, J. C. Pickel, I. Jun, M. A. Xapsos, E. A. Burke, R. Ladbury, “Monte carlo treatment of displacement damage in bandgap engineered HgCdTe detectors” Proceedings of RADECS 2003: Radiation and its effects on components and systems, Noordwijk, The Netherlands, 479-485 (2003).
[22] A. V. Voitsekhovskii, A. P. Kokhanenko, S. A. Shulga, R. Smith, Nuclear Instruments and Methods in Physics Research B 227 (2005) 531.
[23] H. Duan, X. S. Chen, Y. Huang, W. Lu, Solid State Commun. 143 (2007) 471.
[24] P. Kokkonis, V. Leute, Solid State Ionics 176 (2005) 2681.
[25] X. J. Chen, X. L. Hua, J. S. Hu, J.-M. Langlois, W. A. Goddard Ⅲ, Phys. Rev. B 53 (1996) 1377, and the reference therein.
[26] X. J. Chen, A. Mintz, J. S. Hu, X. L. Hua, J. Zinck, W. A. Goddard Ⅲ, J. Vac. Sci. Technol. B 13 (1995) 1715.
[27] A. E. Merad, M. B. Kanoun, G. Merad, J. Cibert, H. Aourag, Mater. Chem. Phys. 92 (2005) 333.
[28] J. J. Tan, Y. Li, G. F. Ji, Comput. Mater. Sci. 58 (2012) 243.
[29] Ö. Akinci, H. H. Gürel, H. Ünlü, Thin Solid Films 517 (2009) 2431.
[30] H. Duan, X. S. Chen, L. Z Sun, X. H. Zhou, W. Lu, Acta Physica Sinica 54 (2005) 5293.
[31] S. Tongay, E. Durgun, S. Ciraci, Appl. Phys. Lett. 85 (2004) 6179.
[32] T. Ouahrani, A. H. Reshak, R. Khenata, H. Baltache, B. Amrani, A. Bouhemadou, Phys. Status Solidi B 248 (2011) 712.
[33] H. Duan, X. S. Chen, Y. Huang, X. H. Zhou, L. Z. Sun, W. Lu, Phys. Rev. B 76 (2007) 035209.
[34] G. Wang, S. Wu, Z. H. Geng, S. Y. Wang, L. Y. Chen, Y. Jia, J. Korean Phys. Soc. 56 (2010) 1307, and the reference therein.
[35] L. Bellaiche, D. Vanderbilt, Phys. Rev. B 61 (2000) 7877.
[36] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 220 (2005) 567.
[37] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188.
[38] K. Sang Park, S. Syck Jun, S.-U. Kim, M. Jang Park, J. Korean Phys. Soc. 22 (1989) 192.
[39] A. Werner, H. D. Hochheimer, K. Stroessner, A. Jayaraman, Phys. Rev. B 28 (1983) 3330.
[40] J. C. Woolley, B. Ray, J. Phys. Chem. Solids 15 (1960) 27.
[41] O. V. Vojshcheknivkii, Ukrains'kii Fizichnii Zhurnal (Ukrainian Edition) 9 (1964) 796.
[42] M. Kh. Rabadanov, I. A. Verin, Yu. M. Ivanov, V. I. Simonov, Kristallografiya 46 (2001) 703.
[43] Z. W. Lu, D. Singh, H. Krakauer, Phys. Rev. B 39 (1989) 10154.
[44] M. Born, K. Huang, Dynamical Theory and Experiment I, Springer-Verlag, Berlin, 1982.
[45] S. F. Pugh, Philos. Mag. 45 (1954) 833.
Cite This Article
  • APA Style

    Wei Zeng, Qi-Jun Liu, Zheng-Tang Liu. (2016). First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe. World Journal of Applied Physics, 1(1), 26-29. https://doi.org/10.11648/j.wjap.20160101.14

    Copy | Download

    ACS Style

    Wei Zeng; Qi-Jun Liu; Zheng-Tang Liu. First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe. World J. Appl. Phys. 2016, 1(1), 26-29. doi: 10.11648/j.wjap.20160101.14

    Copy | Download

    AMA Style

    Wei Zeng, Qi-Jun Liu, Zheng-Tang Liu. First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe. World J Appl Phys. 2016;1(1):26-29. doi: 10.11648/j.wjap.20160101.14

    Copy | Download

  • @article{10.11648/j.wjap.20160101.14,
      author = {Wei Zeng and Qi-Jun Liu and Zheng-Tang Liu},
      title = {First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe},
      journal = {World Journal of Applied Physics},
      volume = {1},
      number = {1},
      pages = {26-29},
      doi = {10.11648/j.wjap.20160101.14},
      url = {https://doi.org/10.11648/j.wjap.20160101.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjap.20160101.14},
      abstract = {We have calculated the structural, elastic, mechanical and electronic properties of cubic Hg0.5Cd0.5Te by using the first-principles density functional theory (DFT) within the local density approximation (LDA) plus virtual crystal approximation (VCA). Compared with the previous experimental and theoretical data of cubic Hg0.5Cd0.5Te, our calculated results demonstrate the adequacy of using the LDA+VCA for HgCdTe, which is expected to help people design new tellurium based multi-alloys using VCA.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe
    AU  - Wei Zeng
    AU  - Qi-Jun Liu
    AU  - Zheng-Tang Liu
    Y1  - 2016/11/10
    PY  - 2016
    N1  - https://doi.org/10.11648/j.wjap.20160101.14
    DO  - 10.11648/j.wjap.20160101.14
    T2  - World Journal of Applied Physics
    JF  - World Journal of Applied Physics
    JO  - World Journal of Applied Physics
    SP  - 26
    EP  - 29
    PB  - Science Publishing Group
    SN  - 2637-6008
    UR  - https://doi.org/10.11648/j.wjap.20160101.14
    AB  - We have calculated the structural, elastic, mechanical and electronic properties of cubic Hg0.5Cd0.5Te by using the first-principles density functional theory (DFT) within the local density approximation (LDA) plus virtual crystal approximation (VCA). Compared with the previous experimental and theoretical data of cubic Hg0.5Cd0.5Te, our calculated results demonstrate the adequacy of using the LDA+VCA for HgCdTe, which is expected to help people design new tellurium based multi-alloys using VCA.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Teaching and Research Group of Chemistry, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China

  • Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu, People’s Republic of China

  • State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, People’s Republic of China

  • Sections