| Peer-Reviewed

Magnetic Investigations of Microcrystalline Na3Ln0.99-xEr0.01Crx (PO4)2 Orthophosphates Synthesized by Pechini Method (Ln=La, Gd)

Received: 17 October 2016    Accepted: 4 January 2017    Published: 23 January 2017
Views:       Downloads:
Abstract

Na3Ln (PO4)2 orthophosphates (Ln=La, Gd) doped with Er3+ and codoped with Cr3+ ion were synthesized by Pechini method and characterized by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. Low temperature EPR spectra were detected and analyzed in terms of temperature dependence and the structure of the obtained materials. They show that erbium and chromium ions substitute Ln3+ and also Na+ ions or Na+ channels forming complex EPR spectra. Both kinds of ions reveal ferromagnetic type of interaction which show some anomaly at the temperature between 10 and 15 K. Magnetic susceptibility reveals a weak antiferromagnetic kind of interaction dominating in the whole temperature range, from 3.5 to 300 K.

Published in World Journal of Applied Physics (Volume 2, Issue 1)
DOI 10.11648/j.wjap.20170201.12
Page(s) 7-18
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Orthophosphates, EPR, Magnetic Susceptibility, Rare-Earth, Transition Metal

References
[1] J. Z. Letho, P. Houneou, R. C. R. Eholie, L’orthophosphate de cerium III et de potassium K3Ce (PO4)2: donnees crystallographiques et structurales, C. R. Acad. Sci. (Paris) ser. II, 307 (1988) 1177-1179.
[2] M. Kloss, B. Finke, L. Schwarz, D. Haberland, Optical investigation on Na3RE (PO4)2 (RE=La, Gd, Eu), J. Lumin. 72-74 (1997) 684-686.
[3] L. Schwarz, M. Kloss, A. Rohman, U. Sasum, D. Haberland, Investigations of alkaline rare earth orthophosphates M3RE (PO4)2, J. Alloys Compd. 275-277 (1998) 93-95.
[4] M. Kloss, L. Schwarz, J. P. K. Hölsa, Vibration and luminescence spectroscopic investigations of the alkali rare earth double phosphates M3 (RE, Eu) (PO4) 2 (M=K, Rb; RE=La, Gd), Acta Phys. Pol. A 95 (1999) 343-349.
[5] V. A. Morozov, A. P. Bobylev, N. V. Gerasimova, A. N. Kirichenko, V. V. Mikhailin, G. Ya. Pushkina, B. I. Lazoryak, L. N. Komissarova, Structure and spectral properties of double phosphates and vanadates K3Eu (EO4)2 (E=P, V), Russ. J. Inorg. Chem. 46 (2001) 711-718.
[6] I. Parreu, R. Sole, J. Gavalda, J. Massons, F. Diaz, M. Aguilo, Crystallization region, crystal growth, and phase transitions of KNd (PO3)4, Chem. Mater. 15 (2003) 5059-5064.
[7] C.-H. Lu, S. V. Godbole, Synthesis and characterization of ultraviolet-emitting cerium-ion-doped SrBPO5 phosphors, J. Mater. Res. 19 (2004) 2336-2342.
[8] M. Guzik, T. Aitasalo, W. Suszkiewicz, J. Hölsa, B. Keller, J. Legendziewicz, Optical spectroscopy of yttrium double phosphates doped by cerium and praseodymium ions, J. Alloys Comp. 380 (2004) 368-375.
[9] H. B. Liang, Y. Tao, Q. Su, The luminescent properties of Ba3Gd1-xLnx (PO4)3 under synchrotron radiation VUV excitation, Mater. Sci. Eng. B 119 (2005) 152-158.
[10] L. Benarafa, L. Rghioui, R. Neffar, M. S. Idrissi, M. Knidiri, A. Lorriaux, F. Wallart, Theoretical and experimental analysis of the vibration spectra of rare earth potassium phosphates, Spectrochim. Acta A 61 (2005) 419-430.
[11] I. Parreau, J. J. Carvajal, X. Solans, F. Diaz, M. Aguilo, Crystal structure and optical characterization of pure and Nd-substituted type III KGd (PO3)4, Chem. Matter. 18 (2006) 221-228.
[12] M. Fang, W. D. Cheng, H. Zhang, D. Zhao, W. L Zhang, S. L. Yang, A sodium gadolinium phosphate with two different types of tunnel structure: synthesis, crystal structure, and optical properties of Na3GdP2O8, J. Solid State Chem. 181 (2008) 2165-2170.
[13] N. Hashimoto, Y. Takada, K. Sato, S. Ibuki, Green-luminescent (La, Ce)PO4-Tb phosphors from small size fluorescent lamps, J. Lumin. 48 (1991) 893-897.
[14] K. Otsuka, S. Miyazawa, T. Yamada, H. Iwasaki, J. Nakano, CW laser-oscillators in MeNdP4O12 (Me=Li, Na, K) at 1.32 MUM, J. Appl. Phys. 48 (1977) 2099-2101.
[15] J. Chevalier, L. Gremillard, Ceramics for medical applications: A picture for the next 20 years, J. Eur. Ceram. Soc. 29 (2009) 1245–1255.
[16] P. B. Moore: Bracelets and pinwheels: A topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures. Am. Mineral. 58 (1973) 32-42.
[17] P. Godlewska, Sz. Bandrowski, L. Macalik, R. Lisiecki, W. Ryba-Romanowski, I. Szczygieł, P. Ropuszyńska-Robak, H. Hanuza, Spectroscopic properties of Nd3+ ion in several types of phosphate materials, Opt. Mater. 34 (2012) 1023–1028.
[18] T. Aitasalo, M. Guzik, W. Szuszkiewicz, J. Holsa, B. Keller, J. Legendziewicz, Properties of ytterbium and neodymium doped alkali metal yttrium double phosphates of the M3Y1-xLn2 (PO4)2 type, J. Alloys Comp. 380 (2004) 405–412.
[19] J. Legendziewicz, M. Guzik, J. Cybinska, A. Stefan, V. Lupei, Concentration dependence of luminescence properties in praseodymium and praseodymium/ytterbium-doped lutetium double phosphates, Opt. Mater. 30 (2008) 1667–1671.
[20] J. Legendziewicz, M. Guzik, J. Cybinska, VUV spectroscopy of double phosphates doped with rare earth ions, Opt. Mater. 31 (2009) 567–574.
[21] J. Legendziewicz, J. Cybinska, M. Guzik, G. Boulon, G. Meyer, Comparative study of crystal field analysis in Pr3+ and Yb3+-doped K2LaX5 (X=Cl, Br) ternary halides and Yb3+-doped A3Lu (PO4)2 (A=Na+, Rb+) double phosphates. Charge transfer band observations of Yb3+-doped systems, Opt. Mater. 30 (2008) 1655–1666.
[22] J. Legendziewicz, M. Guzik, W. Szuszkiewicz, Charge transfer and f–f emission of trivalent ytterbium observed in double phosphates MIM III (PO4)2 (MI =Na, Rb; MIII =Lu, Y), J. Alloys Comp. 451 (2008) 165–171.
[23] W. Szuszkiewicz, B. Keller, M. Guzik, T. Aitasalo, J. Kiittykoski, J. Holsa, J. Legendziewicz, Application of lanthanide (Eu, Nd) spectroscopy as a structural probe of diluted double phosphates, J. Alloys Comp. 341 (2002) 297–306.
[24] M. Guzik, J. Legendziewicz, W. Szuszkiewicz, A. Walasek, Structural and optical characterization of ytterbium doped lutetium double phosphates, Z. Anorg. Allg. Chem. 633 (2007) 310–313.
[25] J. Legendziewicz, M. Guzik, J. Cybinska, A. Stefan, V. Lupei, Optical behaviour of praseodymium-doped and praseodymium/ytterbium-co-doped double phosphates, J. Alloys Comp. 451 (2008) 158–164.
[26] S. Szulia, M. Kosmowska, H. A. Kołodziej, M. Sobczyk, G. Czupinska, Dielectric relaxation and electronic spectroscopy of double potassium yttrium tetraoxophosphate (V) K3Y (PO4)2 doped by neodymium and europium ions, J. Mol. Struct. 1006 (2011) 409–418.
[27] S. Szulia, H. A. Kołodziej, W. Szuszkiewicz, G. Czupinska, Dielectric relaxation in double potassium yttrium orthophosphate K3Y (PO4)2 and sodium yttrium orthophosphate Na3Y (PO4)2, J. Non-Cryst. Solids 356 (2010) 805–808.
[28] D. Piotrowska, A. Matraszek, S. Szulia, M. Kosmowska, I. Szczygieł, Thermal and dielectric properties of K3Nd (PO4)2 prepared by Pechini and solid state method, J. Alloys Comp. 585 (2014) 337–344.
[29] J. M. Farmer, L. A. Boatner, B. C. Chakoumakos, C. J. Rawn, D. Mandrus, R. Jin, J. C. Bryan, Polymorphism, phase transitions, and thermal expansion of K3Lu (PO4)2, J. Alloys Comp. 588 (2014) 182–189.
[30] M. Guzik, J. Legendziewicz, W. Szuszkiewicz, A. Walasek, Synthesis and optical properties of powders of lutetium and yttrium double phosphates-doped by ytterbium, Opt. Mater. 29 (2007) 1225–1230.
[31] A. Matraszek, P. Godlewska, L. Macalik, K. Hermanowicz, J. Hanuza, I. Szczygieł, Optical and thermal characterization of microcrystalline Na3RE (PO4)2: Yb orthophosphates synthesized by Pechini method (RE=Y, La, Gd), J. Alloys Comp. 619 (2015) 275–283.
[32] A. Matraszek, I. Szczygieł, Modified Pechini synthesis of Na3Ce (PO4)2 and thermochemistry of its phase transition, J. Therm. Anal. Calorim. 93 (2008) 689–692.
[33] O. G. Karpov, D. Y. Pushcharovskii, A. P. Khoymakov, A. E. Pobedimskaya, N. V. Belov, Vitusite – a mineral with a disordered structure, Soviet Phys. Crystallogr. 25 (1980) 650–653.
[34] S. M. Kaczmarek, T. Tsuboi, A. Leniec, Y. Nakai, G. Leniec, M. Berkowski, W. Huang, Magnetic and optical properties of Cr/Mn-co-doped Li1.72Na0.28Ge4O9 single crystals J. Cryst. Growth 401 (2014) 828–832.
[35] V. Singh, R. P. S. Chakradhar, J. L. Rao, Ho-Young Kwak, EPR and photoluminescence properties of combustion-synthesized ZnAl2O4: Cr3+ phosphors, J. Mater. Sci. 46 (2011) 2331–2337.
[36] S. Khaddar-Zine, A. Ghorbel, C. Naccache, EPR and UV–visible spectroscopic studies of alumina-supported chromium oxide catalysts, J. Mol. Catalysis A: Chemical 150 (1999) 223–231.
[37] M. J. Mombourquette, J. A. Weil, D. G. McGavin, EPR-NMR User's Manual, Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada, 1999.
[38] R. Kripal, S. Pandey, Single crystal EPR, optical absorption and superposition model study of Cr3+ doped ammonium dihydrogen phosphate, Spectrochim. Acta A 76 (2010) 62–70.
[39] D. Bravo, F. J. Lopez, The EPR technique as a tool for the understanding of laser systems. The case of Cr3+ and Cr4+ ions in Bi4Ge3O12, Opt. Mater. 13 (1999) 141-145.
[40] D. E. Budil, D. G. Park, J. M. Burlitch, R. F. Geray, R. Dieckmann and J. H. Freed, 9.6 GHz and 34 GHz electron paramagnetic resonance studies of chromium‐doped forsterite, J. Chem. Phys. 101 (1994) 3538.
[41] N. N. Lubinskii, L. A. Bashkirov, A. I. Galyas, S. V. Shevchenko, G. S. Petrov, I. M. Sirota, Magnetic Susceptibility and Effective Magnetic Moment of the Nd3+ and Co3+ Ions in NdCo1xGaxO3, Inorg. Mater. 44 (9) (2008) 1015–1021.
[42] G. Leniec, L. Macalik, S. M. Kaczmarek, T. Skibinski, J. Hanuza, EPR and optical properties of KY (WO4)2: Gd3+ powders, J. Mater. Res. 27 (2012) 2973-2981.
Cite This Article
  • APA Style

    S. M. Kaczmarek, G. Leniec, H. Fuks, T. Skibiński, A. Pelczarska, et al. (2017). Magnetic Investigations of Microcrystalline Na3Ln0.99-xEr0.01Crx (PO4)2 Orthophosphates Synthesized by Pechini Method (Ln=La, Gd). World Journal of Applied Physics, 2(1), 7-18. https://doi.org/10.11648/j.wjap.20170201.12

    Copy | Download

    ACS Style

    S. M. Kaczmarek; G. Leniec; H. Fuks; T. Skibiński; A. Pelczarska, et al. Magnetic Investigations of Microcrystalline Na3Ln0.99-xEr0.01Crx (PO4)2 Orthophosphates Synthesized by Pechini Method (Ln=La, Gd). World J. Appl. Phys. 2017, 2(1), 7-18. doi: 10.11648/j.wjap.20170201.12

    Copy | Download

    AMA Style

    S. M. Kaczmarek, G. Leniec, H. Fuks, T. Skibiński, A. Pelczarska, et al. Magnetic Investigations of Microcrystalline Na3Ln0.99-xEr0.01Crx (PO4)2 Orthophosphates Synthesized by Pechini Method (Ln=La, Gd). World J Appl Phys. 2017;2(1):7-18. doi: 10.11648/j.wjap.20170201.12

    Copy | Download

  • @article{10.11648/j.wjap.20170201.12,
      author = {S. M. Kaczmarek and G. Leniec and H. Fuks and T. Skibiński and A. Pelczarska and P. Godlewska and J. Hanuza and I. Szczygieł},
      title = {Magnetic Investigations of Microcrystalline Na3Ln0.99-xEr0.01Crx (PO4)2 Orthophosphates Synthesized by Pechini Method (Ln=La, Gd)},
      journal = {World Journal of Applied Physics},
      volume = {2},
      number = {1},
      pages = {7-18},
      doi = {10.11648/j.wjap.20170201.12},
      url = {https://doi.org/10.11648/j.wjap.20170201.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjap.20170201.12},
      abstract = {Na3Ln (PO4)2 orthophosphates (Ln=La, Gd) doped with Er3+ and codoped with Cr3+ ion were synthesized by Pechini method and characterized by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. Low temperature EPR spectra were detected and analyzed in terms of temperature dependence and the structure of the obtained materials. They show that erbium and chromium ions substitute Ln3+ and also Na+ ions or Na+ channels forming complex EPR spectra. Both kinds of ions reveal ferromagnetic type of interaction which show some anomaly at the temperature between 10 and 15 K. Magnetic susceptibility reveals a weak antiferromagnetic kind of interaction dominating in the whole temperature range, from 3.5 to 300 K.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Magnetic Investigations of Microcrystalline Na3Ln0.99-xEr0.01Crx (PO4)2 Orthophosphates Synthesized by Pechini Method (Ln=La, Gd)
    AU  - S. M. Kaczmarek
    AU  - G. Leniec
    AU  - H. Fuks
    AU  - T. Skibiński
    AU  - A. Pelczarska
    AU  - P. Godlewska
    AU  - J. Hanuza
    AU  - I. Szczygieł
    Y1  - 2017/01/23
    PY  - 2017
    N1  - https://doi.org/10.11648/j.wjap.20170201.12
    DO  - 10.11648/j.wjap.20170201.12
    T2  - World Journal of Applied Physics
    JF  - World Journal of Applied Physics
    JO  - World Journal of Applied Physics
    SP  - 7
    EP  - 18
    PB  - Science Publishing Group
    SN  - 2637-6008
    UR  - https://doi.org/10.11648/j.wjap.20170201.12
    AB  - Na3Ln (PO4)2 orthophosphates (Ln=La, Gd) doped with Er3+ and codoped with Cr3+ ion were synthesized by Pechini method and characterized by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. Low temperature EPR spectra were detected and analyzed in terms of temperature dependence and the structure of the obtained materials. They show that erbium and chromium ions substitute Ln3+ and also Na+ ions or Na+ channels forming complex EPR spectra. Both kinds of ions reveal ferromagnetic type of interaction which show some anomaly at the temperature between 10 and 15 K. Magnetic susceptibility reveals a weak antiferromagnetic kind of interaction dominating in the whole temperature range, from 3.5 to 300 K.
    VL  - 2
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, Westpomeranian University of Technology In Szczecin, Al. Piastów, Szczecin

  • Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, Westpomeranian University of Technology In Szczecin, Al. Piastów, Szczecin

  • Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, Westpomeranian University of Technology In Szczecin, Al. Piastów, Szczecin

  • Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, Westpomeranian University of Technology In Szczecin, Al. Piastów, Szczecin

  • Wroc?aw University of Economics, Faculty of Chemistry and Food Technology, ul. Komandorska, Wroc?aw, Poland

  • Wroc?aw University of Economics, Faculty of Chemistry and Food Technology, ul. Komandorska, Wroc?aw, Poland

  • Wroc?aw University of Economics, Faculty of Chemistry and Food Technology, ul. Komandorska, Wroc?aw, Poland

  • Sections