| Peer-Reviewed

Dye Sensitized TiO2 Nanopore Thin Films with Antimicrobial Activity Against Methicillin Resistant Staphylococcus Aureus Under Visible Light

Received: 6 September 2016    Accepted: 22 September 2016    Published: 14 October 2016
Views:       Downloads:
Abstract

In this work the antimicrobial activity of TiO2 nanopore thin films sensitized by Copper tetracarboxyphthalocyanines (TcPcCu) was investigated. TiO2 thin films were deposited by magnetron sputtering and the sensitization process was done by adsorption process. The samples were characterized by scanning electronic microscopy (SEM), Fourier Transform infrared spectroscopy (FTIR), UV-Vis spectrophotometry, diffuse reflectance and Raman spectroscopy. Finally, the antimicrobial effect against Methicillin resistant Staphylococcus aureus (MRSA) under visible irradiation on TiO2 and TcPcCu/TiO2 was studied. The antimicrobial assay showed that TcPcCu/TiO2 thin films reach 80.4% (+/3.4) of inhibition of MRSA growth after visible irradiation.

Published in World Journal of Applied Chemistry (Volume 1, Issue 1)
DOI 10.11648/j.wjac.20160101.12
Page(s) 9-15
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

TiO2 Nanopores, Thin Film, Photodynamic Therapy, MRSA

References
[1] S. R. Harris et al., Evolution of MRSA during hospital transmission and intercontinental Spread, Science 327 (5964) (2010), 469–474. doi: 10.1101/gr.147710.112
[2] K. C. Ho, P. J. Tsai, Y. S. Lin, Y. C. Chen, Using biofunctionalized nanoparticles to probe pathogenic bacteria, Anal. Chem., 76 (24) (2004), 7162–7168. DOI: 10.1021/ac048688b
[3] K. Nawattanapaiboon et al., SPR-DNA array for detection of methicillin-resistant Staphylococcus aureus (MRSA) in combination with loop-mediated isothermal amplification, Biosens. Bioelectron. 74 (2015), 335–340. DOI: 10.1016/j. bios.2015.06.038
[4] C. Y. Wen, J. Hu, Z. L. Zhang, Z. Q. Tian, G. P. Ou, Y. L. Liao, Y. Li, M. Xie, Z. Y. Sun, D. W. Pang, One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres, Anal. Chem., 85 (2) (2013), 1223–1230. DOI: 10.1021/ac303204q
[5] J. Paulsen, A. Mehl, A. Askim, E. Solligard, B. O. Asvold, J. K. Damas. Epidemiology and outcome of Staphylococcus aureus bloodstream infection and sepsis in a Norwegian county 1996–2011: an observational study, BMC Infect. Dis. 15 (2015), 116–126. DOI: 10.1186/s12879-016-1553-8.
[6] D. M. Underhill, Phagosome maturation: steady as she goes. Immunity 23 (2005) 343–346. iSSN 1074-7613.
[7] S. Rebiahi, D. Abdelouahid, M. Rahmoun, S. Abdelali, H. Azzaoui, Emergence of vancomycin-resistant Staphylococcus aureus identified in the Tlemcen university hospital (North¬West Algeria). Médecine et maladies infectieuses. 41 (12) (2011) 646–651. doi:10.1016/j.medmal.2011.09.010
[8] M. Neginskaya, E. Berezhnaya, M. Rudkovskii, S. Demyanenko, A. Uzdensky. Photodynamic effect of Radachlorin on nerve and glial cells, Photodiagn. Photodyn. Ther. 11 (3) (2014) 357–364. doi:10.1117/12.2229929.
[9] G. Orellana, L. Villén, M. Jiménez-Hernández. Desinfección mediante fotosensibilizadores: Principios básicos. Solar Safe Water: Tecnologías solares para la desinfección y descontaminación del agua, ed J Blanco and MA Blesa, UNSAM, San Martín, Argentina. (2005) 237–251.
[10] X. H. Tao, Y. Guan, D. Shao, W. Xue, F. S. Ye, M. Wang, M. H. He. Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia: A systemic review. Photodiagn. Photodyn. Ther. 11 (2) (2014) 104–112. doi: 10.1016/j. pdpdt.
[11] Y. Cheng, C. Burda. 2.01 ¬ Nanoparticles for photodynamic therapy. Comprehensive Nanosc. Technol. (2011) 1¬28. doi:10.1016/B978-0-12-374396-1.00071-4.
[12] T. Öztürk, H. Oner, A. O. Saatci, S. Kaynak. Low fluence photodynamic therapy combinations in the treatment of exudative agerelated macular degeneration. Intern. J. Ophthalmol. 5 (3) (2012) 377. doi:10.3980/j.issn.2222-3959.
[13] S. Banfi, E. Caruso, L. Buccafurni, R. Ravizza, M. Gariboldi, E. Monti, Zinc phthalocyanines-mediated photodynamic therapy induces cell death in adenocarcinoma cells, J. Organometal. Chem. 692 (6) (2007) 1269–1276. doi:10.1016/j.jorganchem.2006.11.028
[14] A. H. A. Machado, C. P. Soares, N. S. Da Silva, K. C. M. Moraes, Cellular and molecular studies of the initial process of photodynamic therapy in Hep2 cells using LED light source and two different photosensitizers, Cell Biology Intern. 33 (7) (2009) 785–795. DOI: 10.1016/j. cellbi.2009.04.011.
[15] J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, Imaging and photodynamic therapy: mechanisms, monitoring and optimization, Chemical Reviews 110 (5) (2010) 2795–2838. DOI: 10.1021/cr900300p.
[16] J. Paczkowskit, D. C. Neckers. Photochemical properties of rose bengal. 11. Fundamental Studies in Heterogeneous Energy Transfer. Macromolecules. 18 (12) (1985) 2412–2418. DOI: 10.1021/ma00154a013.
[17] M. Ochsner. Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology 39 (1) (1997) 118.
[18] T. López, E. Ortiz, M. Álvarez, J. Navarrete, J. A. Odriozola, F. Martínez Ortega, E. A. Páez Mozo, Study of the stabilization of zinc phthalocyanine in sol gel TiO2 for photodynamic therapy applications. Nanomedicine: Nanotechnology, Biology, and Medicine 6 (6) (2010) 777–785. doi: 10.1016/j. nano.
[19] A. Markowska¬Szczupak, K. Ulfig, A. Morawski. The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal. Today 169 (1) (2011) 249–257. doi:10.1016/j.cattod.2010.11.055.
[20] T. Fotiou, T. Triantis, T. Kaloudis, A. Hiskia, Evaluation of the photocatalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off¬odor compounds under UV¬A, solar and visible light. Chem. Eng. J. 261 (2015) 17–26. DOI: 10.1021/ie400382r.
[21] O. Modesto, P. Hammer, R. F. P. Nogueira, Gas phase photocatalytic bacteria inactivation using metal modified TiO2 catalysts. J. Photochem. Photobiol A 253 (2013) 38–44. doi:10.1016/j.jphotochem.2012.12.016.
[22] A. Manassero, M. L. Satuf, O. M. Alfano. Evaluation of UV and visible light activity of TiO2 catalysts for water remediation. Chem. Eng. J. 225 (2013) 378–386. DOI: 10.1016/j.cej.2013.03.097.
[23] L. Giribabu, K. Sudhakar, V. Velkannan. Phthalocyanines: potential alternative sensitizers to Ru (II) polypyridyl complexes for dye sensitized solar cells. Current Science 102 (7) (2012) 991–1000.
[24] Z. Chen, S. Zhou, J. Chen, L. Li, P. Hu, S. Chen, M. Huang. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy. J. of Luminescence 152 (2014) 103–107. doi:10.1016/j.jlumin.2013.10.067.
[25] P. Mikula, L. Kalhotka, D. Jancula, S. Zezulka, R. Korinkova, J. Cerny, et al. Evaluation of antibacterial properties of novel phthalocyanines against Escherichia coli–Comparison of analytical methods. Journal of Photochemistry and Photobiology B: Biology 138 (2014) 230–239. doi:10.1016/j.jphotobiol.2014.04.014.
[26] B. Achar, G. F., A. Parker, J. Keshavaya, Preparation and structural investigations of Cu (II),Co (II), Ni (II) and Zn (II) derivatives of 2,9,16,23 phthalocyanine tetracarboxylic acids. Indian J. Chem. 27 (1986) 411.
[27] B. N Achar. G. M. Fohlen, J. A. Parker, J. Keshavayya, Synthesis and structural studies of metal (II) 4,9,16,23-phthalocyanine tetraamines, Polyhedron 6 (6) (1987), 1463-1467. doi:10.1016/S0277-5387 (00)80910-9.
[28] P. M. Perillo, D. F. Rodríguez, Formation of TiO2 Nanopores by Anodization of Ti-Films, Open Access Library Journal, 2014, 1, 1–9. http://dx.doi.org/10.4236/oalib1100630.
[29] A. Camacho, M. Giles, A. Ortegón, M. Palao, B. Serrano, O. Velázquez, Técnicas para el análisis microbiológico de alimentos. 2da Edición Facultad de Química, UNAM, (2009) 9 pages.
[30] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnol. 18 (22) (2007) 225103. doi:10.1088/0957-4484/18/22/225103.
[31] P. Zhao, Y. Song, S. Dong, L. Niua, F. Zhang. Synthesis, photophysical and photochemical properties of amphiphilic carboxyl phthalocyanine oligomers. Dalton Transactions, 32 (2009) 6327–6334. DOI: 10.1039/B904569D.
[32] Y. Gok, H. Z. Gok. Synthesis, characterization and spectral properties of novel zinc phthalocyanines derived from C2 symmetric diol. J. Molecular Structure 1067 (2014) 169–176. doi:10.1016/j.molstruc.2014.03.037.
[33] N. Touka, H. Benelmadjat, B. Boudine, O. Halimi, M. Sebais, Copper phthalocyanine nanocrystals embedded into polymer host: Preparation and structural characterization. J. Association of Arab Universities for Basic and Appl. Sci. 13 (1) (2013) 52–56. doi:10.1016/j.jaubas.2012.03.002.
[34] J. Nackiewicz, A. Suchan, M. Kliber. Octacarboxy phthalocyanines–compounds of interesting spectral, photochemical and catalytic properties. Chemik 68 (4) (2014) 369–376.
[35] B. Broz´ek–Płuska, I. Szymczyk, H. Abramczyk, Raman spectroscopy of phthalocyanines and their sulfonated derivatives, J. Mol. Struc. 744 (2005) 481–485. doi:10.1016/j.molstruc.2004.12.056.
[36] M. Vishwas, K. Narasimha Rao, R. Chakradhar, Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO2 thin films. Spectrochim. Acta Part A 99 (2012) 33–36.
[37] C. Jennings, R. Aroca, Ah–Mee Hor, R. O. Loutfy, Raman Spectra of Solid Films Mg, Cu and Zn Phthalocyanine Complexes. J. Raman Spectrosc. 15 (1) (1984) 34–37. DOI: 10.1002/jrs.1250150108.
[38] P. C. Lee and D. Meisel, Adsorption and Surface Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 86 (17) (1982) 3391–3395. DOI: 10.1021/j100214a025.
[39] L. Yang, M. Gong, X. Jiang, D. Yin, X. Qin, B. Zhao W. Ruan. Investigation on SERS of different phase structure TiO2 nanoparticles, J. Raman Spectrosc. 46 (3) (2015) 287–292. DOI: 10.1002/jrs.4645.
[40] U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep. 48 (5) (2003) 53–229. 10.1016/S0167-5729 (02)00100-0.
[41] K. Bayo, J. C. Mossoyan, G. V. Ouedraogo. Preparation and analysis by UV– Vis of zinc phthalocyanine complexes. Spectrochim. Acta Part A 60 (2004) 653–657. PMID: 14747091.
[42] A. B. Murphy, Bandgap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 91 (2007) 1326–1337. doi:10.1016/j.solmat.2007.05.005.
[43] K. Gupta, R. P. Singh, A. Pandey. Photocatalytic antibacterial performance of TiO2 and Ag doped TiO2 against S. aureus. P. aeruginosa and E. Coli. Beilstein J. Nanotechnol. 4 (2013) 345–351. doi: 10.3762/bjnano.4.40.
[44] P. S. Batista, D. R.de Souza, R. V. Maximiano, N. M.Barbosa Neto, A. E. H. Machado. Quantum efficiency of hydroxyl radical formation in a composite containing nanocrystalline TiO2 and zinc phthalocyanine, and the nature of the incident radiation. J. Mat. Sci. Res. 2 (3) (2013) 82–95. DOI: http://dx.doi.org/10.5539/jmsr.v2n3p82.
[45] R. Ashokkumar, A. Kathiravan, P. Ramamurthy. Zn phthalocyanine functionalized Nanometal and nanometal–TiO2 hybrids: aggregation behavior and excited state dynamics. Phys. Chem. Chem. Phys. 16 (2014) 14139–14149. DOI: 10.1039/C4CP00695J.
[46] G. Schneider, D. Wohrle, W. Spiller, J. Stark, G. Schulz Ekloff, Photooxidation of 2-mercaptoethanol by various water-soluble phthlalocyanines in aqueous alkaline solution under irradiation with visible light, Photochem. Photobiol. 60 (1994) 333–342. DOI: 10.1111/j.1751-1097.1994.tb05112.
[47] V. Iliev, A. Mihaylova, L. Bilyarska. Photooxidation of phenols in aqueous solution, catalyzed by mononuclear and polynuclear metal phthalocyanine complexes. J. Mol. Cat. A: Chem. 184 (2002) 121–130. doi:10.1016/S1381-1169 (01) 00520-9.
[48] A. Hegueta, M. E. Jimenez, F. Montero, E. Oliveros, G. Orellana, Singlet oxygen mediated DNA photocleavage with Ru (II) polypyridyl complexes, J. Phys. Chem. B 106 (2002) 4010–4017. DOI: 10.1021/jp013542r.
[49] S. A. Bezman, P. A. Burtis, T. P. J. Izod, M. A. Thayer, Photodynamic inactivation of E. coli by rose Bengal immobilized on polystyrene beads, J. Photochem. Photobiol. 28 (1978) 325–329. DOI: 10.1111/j.1751-1097.1978.tb07714.x.
Cite This Article
  • APA Style

    P. M. Perillo, F. C. Getz. (2016). Dye Sensitized TiO2 Nanopore Thin Films with Antimicrobial Activity Against Methicillin Resistant Staphylococcus Aureus Under Visible Light. World Journal of Applied Chemistry, 1(1), 9-15. https://doi.org/10.11648/j.wjac.20160101.12

    Copy | Download

    ACS Style

    P. M. Perillo; F. C. Getz. Dye Sensitized TiO2 Nanopore Thin Films with Antimicrobial Activity Against Methicillin Resistant Staphylococcus Aureus Under Visible Light. World J. Appl. Chem. 2016, 1(1), 9-15. doi: 10.11648/j.wjac.20160101.12

    Copy | Download

    AMA Style

    P. M. Perillo, F. C. Getz. Dye Sensitized TiO2 Nanopore Thin Films with Antimicrobial Activity Against Methicillin Resistant Staphylococcus Aureus Under Visible Light. World J Appl Chem. 2016;1(1):9-15. doi: 10.11648/j.wjac.20160101.12

    Copy | Download

  • @article{10.11648/j.wjac.20160101.12,
      author = {P. M. Perillo and F. C. Getz},
      title = {Dye Sensitized TiO2 Nanopore Thin Films with Antimicrobial Activity Against Methicillin Resistant Staphylococcus Aureus Under Visible Light},
      journal = {World Journal of Applied Chemistry},
      volume = {1},
      number = {1},
      pages = {9-15},
      doi = {10.11648/j.wjac.20160101.12},
      url = {https://doi.org/10.11648/j.wjac.20160101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjac.20160101.12},
      abstract = {In this work the antimicrobial activity of TiO2 nanopore thin films sensitized by Copper tetracarboxyphthalocyanines (TcPcCu) was investigated. TiO2 thin films were deposited by magnetron sputtering and the sensitization process was done by adsorption process. The samples were characterized by scanning electronic microscopy (SEM), Fourier Transform infrared spectroscopy (FTIR), UV-Vis spectrophotometry, diffuse reflectance and Raman spectroscopy. Finally, the antimicrobial effect against Methicillin resistant Staphylococcus aureus (MRSA) under visible irradiation on TiO2 and TcPcCu/TiO2 was studied. The antimicrobial assay showed that TcPcCu/TiO2 thin films reach 80.4% (+/3.4) of inhibition of MRSA growth after visible irradiation.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Dye Sensitized TiO2 Nanopore Thin Films with Antimicrobial Activity Against Methicillin Resistant Staphylococcus Aureus Under Visible Light
    AU  - P. M. Perillo
    AU  - F. C. Getz
    Y1  - 2016/10/14
    PY  - 2016
    N1  - https://doi.org/10.11648/j.wjac.20160101.12
    DO  - 10.11648/j.wjac.20160101.12
    T2  - World Journal of Applied Chemistry
    JF  - World Journal of Applied Chemistry
    JO  - World Journal of Applied Chemistry
    SP  - 9
    EP  - 15
    PB  - Science Publishing Group
    SN  - 2637-5982
    UR  - https://doi.org/10.11648/j.wjac.20160101.12
    AB  - In this work the antimicrobial activity of TiO2 nanopore thin films sensitized by Copper tetracarboxyphthalocyanines (TcPcCu) was investigated. TiO2 thin films were deposited by magnetron sputtering and the sensitization process was done by adsorption process. The samples were characterized by scanning electronic microscopy (SEM), Fourier Transform infrared spectroscopy (FTIR), UV-Vis spectrophotometry, diffuse reflectance and Raman spectroscopy. Finally, the antimicrobial effect against Methicillin resistant Staphylococcus aureus (MRSA) under visible irradiation on TiO2 and TcPcCu/TiO2 was studied. The antimicrobial assay showed that TcPcCu/TiO2 thin films reach 80.4% (+/3.4) of inhibition of MRSA growth after visible irradiation.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • National Atomic Energy Commission, Micro and Nanotechnology Group, Buenos Aires, Argentina

  • National Atomic Energy Commission, Micro and Nanotechnology Group, Buenos Aires, Argentina

  • Sections