On the Water Electrolysis with Photovoltaic Solar Energy for Hydrogen Production
World Journal of Applied Chemistry
Volume 2, Issue 2, May 2017, Pages: 34-47
Received: Oct. 31, 2016; Accepted: Dec. 29, 2016; Published: Mar. 10, 2017
Views 1269      Downloads 64
Authors
A. Benghnia, Research Unit: Environment Catalyzes and Process Analysis, National School of Engineers of Gabes (ENIG), University of Gabes, Gabes, Tunisia
B. Nabil, Research Unit: Environment Catalyzes and Process Analysis, National School of Engineers of Gabes (ENIG), University of Gabes, Gabes, Tunisia
R. Ben Slama, Research Unit: Environment Catalyzes and Process Analysis, National School of Engineers of Gabes (ENIG), University of Gabes, Gabes, Tunisia
B. Chaouachi, Research Unit: Environment Catalyzes and Process Analysis, National School of Engineers of Gabes (ENIG), University of Gabes, Gabes, Tunisia
Article Tools
Follow on us
Abstract
In this paper we investigated the parameters determining the performance of hydrogen production by using the solar water electrolysis system (SWES), without the need of high additional electrical energy. The electrolyte after and before using in solar electrolysis was described to understand the mechanism responsible on the hydrogen production enhancement. Additionally, the employed electrolyte (deposit) was characterized by FT-IR, UV-visible and electrochemical impedance spectroscopy. As results the salt addition can obtained 40% more hydrogen efficiency. Also the pH values that varied between 3 to 6 and 8.5 to 12 could further improve hydrogen yield. The deposit provided a discriminate environment which is proposed to be responsible for the hydrogen production improvement. In addition, hydroxyl ions are mainly transported through the exchange anion, to maintain charge neutrality, and thus the anode and cathode electrode resulting in a low transport resistance. This can be assumed that the proton transport facilitated by water permeation can lower the transport resistance, and consequently increase hydrogen production.
Keywords
Solar Electrolysis, Hydrogen Production, Deposit, Electrochemical Impedance Spectroscopy
To cite this article
A. Benghnia, B. Nabil, R. Ben Slama, B. Chaouachi, On the Water Electrolysis with Photovoltaic Solar Energy for Hydrogen Production, World Journal of Applied Chemistry. Vol. 2, No. 2, 2017, pp. 34-47. doi: 10.11648/j.wjac.20170202.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Larminie J, Dicks A. Fuel cell systems explained. New York: Wiley, (2000).
[2]
Dunn S. Int J Hydrogen Energy, 27 (2002) 235-64.
[3]
Schlapbach L, Zuttel A. Nature, 414 (2001) 353-8.
[4]
Suh MP, Park HJ, Prasad TK, Lim DW. Chem Rev, 112 (2012) 782-835.
[5]
Serpone N, Lawless D, Terzian R. Solar Energy, 49 (1992) 221.
[6]
Bockris JOM, Dandapani B, Cocke D, Ghoroghchian J. Int J Hydrogen Energy, 10 (1985) 79.
[7]
Barbir, F., Plass, H. J. Jr. and Veziroglu, T. N., Int J Hydrogen Energy, 18 (1993) 87-195.
[8]
Scott, D. S., Int J Hydrogen Energy, 18 (1993) 191-204.
[9]
Hassmann, K. and Kuhne, H.-M., Primary energy sources for hydrogen production, Int J Hydrogen Energy, 18 (1993) 635-640.
[10]
Kyazze G, Popov A, Dinsdale R, Esteves S, Hawkes F, Premier G, et al. Int J Hydrogen Energy, 35 (2010) 7716-22.
[11]
Ribot-Llobet E, Nam J-Y, Tokash JC, Guisasola A, Logan BE. Int J Hydrogen Energy, 38 (2013) 2951-6.
[12]
Merrill MD, Logan BE. J Power Sources, 191 (2009) 203-8.
[13]
Nam J-Y, Logan BE. Int J Hydrogen Energy, 36 (2011) 15105-10.
[14]
Nam J-Y, Logan BE. Int J Hydrogen Energy, 37 (2012) 18622-8.
[15]
Yossan S, Xiao L, Prasertsan P, He Z. Int J Hydrogen Energy, 38 (2013) 9619-24.
[16]
Cheng S, Logan BE. Proc Natl Acad Sci, 104 (2007) 18871-3.
[17]
Darus L. Indo J Biotech, 16 (2011) 53-9.
[18]
Croese E, Jeremiasse AW, Marshall IP, Spormann AM, Euverink GJ, Geelhoed JS,. Enzyme Microb Technol, 62 (2014) 67-75.
[19]
Wang A, Liu W, Ren N, Zhou J, Cheng S. Int J Hydrogen Energy, 35 (2010) 13481-7.
[20]
Selembo PA, Merrill MD, Logan BE. J Power Sources, 190 (2009) 271-8.
[21]
Cheng S, Logan BE. Bioresour Technol, 102 (2011) 3571-4.
[22]
Wang A, Liu W, Ren N, Cheng H, Lee D-J. Int J Hydrogen Energy, 35 (2010) 13488-92.
[23]
Jung S, Regan JM. Appl Environ Microbiol, 77 (2011) 564-71.
[24]
Lee MY, Kim KY, Yang E, Kim IS. Bioresour Technol, 187 (2015) 106-12.
[25]
Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS. Environ Sci Technol, 43 (2009) 9525-30.
[26]
ElMekawy, A., Hegab, H. M., Dominguez-Benetton, X., Pant, D., Bioresour. Technol. 142 (2013) 672–682.
[27]
Kim, K.-Y., Chae, K.-J., Choi, M.-J., Yang, E.-T., Hwang, M. H., Kim, I. S., Chem. Eng. J. 218 (2013) 19–23.
[28]
Liu, H., Logan, B. E.,. Environ. Sci. Technol. 38 (2004) 4040–4046.
[29]
Sleutels, T. H. J. A., Hamelers, H. V. M., Rozendal, R. A., Buisman, C. J. N., Int. J. Hydrogen Energy 34 (2009) 3612–3620
[30]
Werner, C. M., Logan, B. E., Saikaly, P. E., Amy, G. L., J. Membr. Sci. 428 (2013) 116–122.
[31]
Zhang, F., Brastad, K. S., He, Z., Environ. Sci. Technol. 45 (2011) 6690–6696.
[32]
R. Rozendal, H. Hamelers, G. Euverink, S. Metz, and C. Buisman, Int J Hydrogen Energy, vol. 31 (2006) 1632-40.
[33]
P. Millet, F. Andolfatto and R. Durand, Int J Hydrogen Energy, 21 (1996) 87.
[34]
S. Y. Hsu, Journal of Food Engineering, 60 (2003) 469–473.
[35]
Min Su, Liling Wei, Zhaozheng Qiu, Gang Wang, Jianquan Shen, Journal of Power Sources 301 (2016) 29–34.
[36]
Adrian. S, Claion. R, Spectro-chemical analysis, 18 (2013) 114 – 126.
[37]
Rand. D, Dell. R, Hydrogen, RSC publishing (2008).
[38]
Aníbal. M, Slavutsky. M, Bertuzzi. A, Margarita. A, María. G, García. N, A. Ochoa, 35 (2013) 270-278.
[39]
del Arco. M, Trujillano. R, Rives. V, J, Chem, 8 (1998) 761.
[40]
Uzunova. E, Klissurski. D, Mitov. I, Stefanov. P, J, Chem. Mater, 5 (1993) 576.
[41]
Hansen. H. C. B, Koch. C. B, Taylor. R. M, J. Solid State Chem, 113 (1994) 46.
[42]
Ju¨ ttner K. Electrochim Acta. 35 (1990) 1501.
[43]
Ameer MA, Fekry AM, Taib Heakal FEI. Electrochim Acta (2004) 50: 43.
[44]
Priyantha N, Jayaweera P, Macdonald DD, Sun A. J Electroanal Chem (2004) 572: 409.
[45]
Sharma, M., Bajracharya, S., Gildemyn, S., Patil, S. A., Alvarez-Gallego, Y., Pant, D., Rabaey, K., Dominguez-Benetton, X., Electrochim. Acta 140 (2014) 191–208.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186