| Peer-Reviewed

Study of Antagonistic Beneficial Microorganisms to Phytophtora colocasiae, Causal Agent of Taro Mildew (Colocasia esculenta (L.) Schott)

Published in Plant (Volume 5, Issue 3)
Received: 14 July 2017    Accepted: 21 July 2017    Published: 22 August 2017
Views:       Downloads:
Abstract

The cultivation of taro is of great economic and social importance on a global scale. The current orientation towards agricultural production and the serious consequences of the mildew of taro to crops prompts to find alternatives to chemical control. This study aims at selecting in the taro habitat (leaves, rhizosphere) the microorganisms with high antagonistic potential capable of ensuring the biological control of P. colocasiae. Fungus isolated from the taro-infected leaves of the cultivar "Macumba or Ibo coco" from the V8-Agar medium, was kept in pure culture. The different antagonists were obtained by two trapping techniques using P. colocasiae as bait for the associated microorganisms and by the decimal dilution technique. The results reveal fourteen antagonist isolates, including five fungi and two bacteria isolated from the leaves; Against 4 bacteria and 3 fungi at ground level. Identification of the latter identified the presence of Penicillium Sp, Trichoderma Sp, Aspergillus Sp, Pythium Sp., Bacillus Sp, Rhizobium, Streptomyces and seven other unidentified isolates (Ni). The different in vitro tests showed that Rhizobium and Ni4 showed the strongest inhibitions (91.66 and 90.69%). The greenhouse tests showed the high-inhibitory effect of Trichoderma Sp. and Rhizobium, which showed very low foliar alteration percentages (9.65 and 1.86%). These antagonists would be of particular benefit to farmers in the development of biological pesticides.

Published in Plant (Volume 5, Issue 3)
DOI 10.11648/j.plant.20170503.12
Page(s) 51-60
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Taro Mildew, Phytophtora colocasiae, Biological Control, Antagonist Microorganisms

References
[1] FAOSTAT. (2011). Economic and Social Department. The Statistics Division. Major Food and Agricultural Commodities and Producers. http://faostat.fao.org/default.aspx, visited 23 September 2015.
[2] Scot N, Brooks F. E, Glenn T. (2011). Taro Leaf Blight in Hawai’i. University of Hawai’i at Mänoa, Plant Disease 71: 1-14.
[3] IITA. (2009). Root et Tuber systems. http://www.iita.org/cms/articlefiles/2009, visited 15 November 2015
[4] AGRISTAT. (2009). Annulaire des statistiques sur secteur agricole, Campagnes 2006 à 2007. Ministère de l’agriculture et du développement rural. Yaoundé, Cameroun, 100 p.
[5] CTA (Centre Technique de Cooperation Agricole et Rurale). 2010. Guide d’exportation pour les plantes a racines et tubercules en Afrique de l’Ouest et du Centre. Dakar, S6 enegal. 32 p.
[6] Misra R. S, Sriram S. (2002). Medicinal value and export potential of tropical tuber crops. In: Govil J. N, Pandey J, Shivkumar B. G. and Singh V. K. (Editions.). Series Recent Progress in Medicinal Plants, Crop Improvement, Production and Commerce. USA. 376-386 pp.
[7] Binoy B, Hegde V, Makeshkumar T, Jeeva ML (2010): Rapid detection and identification of potyvirus infecting Colocasia esculenta (L.) Schott by reverse transcription–polymerase chain reaction. J. Root Crops 36, 88–94.
[8] Mbong G. A, Fokunang, C. N, Fontem, L. A, Bambot M. B, Tembe, E. A. 2013. An overview of Phytophthora colocasiae of cocoyams: A potential economic disease of food security in Cameroon. Discourse Journal. Agricultural. Food Science. 1 (9): 140-145.
[9] Fullerton R. A. et Tyson J. L. (2004). The biology of Phytophthora colocasiae and implications for its management and control. Horties -Research, Auckland pp. 9.
[10] Brooks F. E. (2005). Taro leaf blight. The Plant Health Instructor. http://www.apsnet.org/edcenter/intropp/lessons/fungi/Oomycetes/Pages/TaroLeafBlight.asp Site visité le 15 novembre 2011.
[11] Guarino L. (2010). Taro Leaf Blight in Cameroon. Biodiversity Weblog. Accessed December 3, 2015. Available at: http:/agro.biodiverse/2010/07/taro-leaf blight-in-Cameroon.
[12] Tsopmbeng G. R, Lienou J. A, Megaptche C. J. P, Fontem D. A. (2014). Effet of pH and temperature levels on in vitro growth and sporulation of Phytophthora colocasiae, taro leaf blight pathogen. International Journal of Agronomy and Agricultural Research 4 (4): 202-206.
[13] Njie M. T. (2010). Mysterious cocoyam leaf disease causes panic in Cameroon. Accessed 10th July 2016. A vailable at: http://www.njeitimah-outlook.com/ articles/article/2088187/144773.htm
[14] Fontem D. A, Mbong G. (2011). A novel epidemic of taro (Colocasia esculenta) blight by Phytophthora colocasiae hits Cameroon. Third Life Science Conference under the Theme Life Science and Animal Production. University of Dschang.
[15] MINADER/DESA/CSSRA, (2010). Note de conjoncture N°11, 1er semestre 2010 Production du taro menacée.
[16] Onyeka J. (2014). Status of Cocoyam (Colocasia esculenta and Xanthosoma spp) in West and Central Africa: Production, Household Importance and the Threat from Leaf Blight. Lima (Peru). CGIAR Research Program on Roots, Tubers and Bananas (RTB). Available online at: www.rtb.cgiar.org 2014
[17] Tarla D. N, Bikomo M. R, Takumbo E. N, Voufo G, Fontem D. A. (2016). Climate change and sustainable management of taro (Colocasia esculenta (L.) Schott.) leaf blight in Western Highlands of Cameroon Revue Scientifique et Technique Forêt et Environnement du Bassin du Congo, Avril (2016) Volume 6. P. 10-19.
[18] Okigbo R. N, Nmeka I. N. (2005). Control of Yam tuber rot with leaf Extracts of Xylopi Aethiopica and Zingiber offinale. African Journal Biotechnology 4 (8): 804-807.
[19] Okigbo R. N, Omodamiro O. D. (2006). Antimicrobial effect of leaf extract of pigeon pea (Cajanus cajan (L) Mill sp) on some human pathogen. Journal. Herbs, spices and Medecine Plants 12 (1/2); 117-127.
[20] Davet P, Rouxel F. (1997). Détection et isolement des champignons du sol. Edition. INRA, Paris. France. 194 p.
[21] Pitt J. I., Hocking A. D. (2009). Fungi and food spoilage. 3rd edition. Springer. New York. ISBN: 978-0-387-92206-5 (Print) 978-0-387-92207-2 (Online) 524 p.
[22] Evans H. C, Holmes K. A, Thomas S. E. (2003). Endophytes and mycoparasites associated with an indigenous forest tree, Theobromagileri, in Ecuador and preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress 2 (2): 149-160.
[23] Rubini M. R, Silva-Ribeiro R. T, Pomella A. W. V, Maki C. S, Araujo W. L, Dos Santos D. R, Azevedo J. L. (2005). Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’Broom Disease. International. Journal Biology Science. 1: 24-33.
[24] Campbell R et Greaves M. P. (1990). Anatomy and community structure of the rhizosphere. In: The rhizosphere. Lynch I. M. (Editions). Wiley Series in Ecology ogical and Applied Microbiology. 11-34.
[25] Westover K. M, Kennedy A. C, Kelley S. E. (1997). Patterns of rhizosphere microbial cornmunity structure associated with Co-occuming plant species. Journal Ecology. 85, 563-873.
[26] Tetso Ghislain Brice. (2104). Isolement d’une bactérie productrice d’amylases et tentative de production de la colle à papier. Mémoire de DEA, Université de Douala-Cameroun 199 pp.
[27] Vincent M. N, Harrison L. A, Brackin J. M, Kovacevich P. A, Mukerji P, Weller D. M. (1991). Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Application. Environ. Microbiol. 57: 2928-2934.
[28] Mickael A. H, Nelson P. E. (1972). Antagonistic effect of soil bacteria on Fusarium roseum from carnation. Phytopathology, 42: 315.
[29] Zhu J, Zhang Z, Yang Z. (2001). General research methods on pathogen of potato late blight (Phytophthora infestans). Journal of Agriculture Sciences 24: 112-114.
[30] Kebe Ismaël B, Mpika Joseph F, N’guessan Kouamé F, HEBBA Prakash K, Gary S. SAMUEL, AKE Severin.(2009). Isolement et identification de microorganismes indigènes de cacaoyères en Côte d’Ivoire et mise en évidence de leurs effets antagonistes vis-à-vis de Phytophthora palmivora, agent de la pourriture brune des cabosses. Sciences et Nature Vol. 6 N°1: 71 - 82 (2009). CNRA, BP 808 Divo, Côte d’Ivoire. USDA-ARS, Beltsville, MD 20705, USA. Université de Cocody, UFR Biosciences, Côte d’Ivoire.
[31] Ferjaoui S, Naïma Boughalleb, Khamassi N. M, Hamdi M. M, Romdhan M. E. (2010). Evaluation de la résistance de certaines variétés de pomme de terre biologique au mildiou (Phytophthora infestans (Mont) de Bary) TROPICULTURA, 2010, 28, 1, 44-49.
[32] El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM, 1993. Towards the biological control of fungal and bacterial diseases of tomato using antagonistic streptomyces Spp. Plant soil 149; 185-195.
[33] Juliette DEDI, Atcho OTCHOUMOU, Kouassi ALLOU.(2010) Effet de l’interaction in vitro et in vivo entre Aspergillus niger, Mucor sp. et Fusarium oxysporum, Fusarium solani, Phoma sp., Penicillium sp., Trichoderma sp. Afrique SCIENCE 06 (3) (2010) 47 - 53 ISSN 1813-548X, http://www.afriquescience.info
[34] Mouria Btissam, Ouazzani-Touhami Amina, Douira Allal.(2013). Effet du compost et de Trichoderma harzianum sur la suppression de la verticilliose de la tomate. Journal of Applied Biosciences 70: 5531-5543, ISSN 1997-5902. Laboratoire de Botanique, de Biotechnologie et de Protection des Plantes, Faculté des Sciences, Université Ibn Tofaïl, B. P 133, Kénitra, Maroc.
[35] Rey P, Le Floch G, Benhamou N, Tirilly Y. 2008. Pythium oligandrumbiocontrol: its relationships with fungi and plants. In: Ait Barka E, Clément C (eds) Plant–microbe interactions. Research Signpost, Kerala, pp 43–67.
[36] Benhamou N, le Floch G, Vallance J, Gerbore J, Grizard D, Rey P (2012) Pythium oligandrum: an example of opportunistic success. Microbiol sgm 158: 2679–2694.
[37] Semperes. F et Santamarina M. P. (2010). Study of the Interactions Between Penicillium Oxalicum Currie & Thom And Alternaria Alternata (Fr.) Keissler Braz Journal Microbiol. 2010 July-September; 41(3): 700–706.
[38] Lamia Lounaci, Souad Athmani-Guemouri.(2014) Action de Paenibacillus polymyxa SGK 2 sur quelques champignons de la fusariose du blé dur (Triticum durum) en Algérie. Algerian Journal of Natural Products 2: 2(2014) 35-42. Online ISSN: 2353-0391 Revised: 28-05-2014.
[39] Simpfendorfer S., Harden T. J and Murray G. M. (2008): Australien Journal of Agricultural Research. PP. 50 (8) 1469-1474.
[40] Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94: 11-19. doi: 10.1007/s10482-008-92413.
Cite This Article
  • APA Style

    Asseng Charles Carnot, Ebongo Lobe Emmanuel, Nanda Djomou Giresse Ledoux, Akono Ntonga Patrick, Mbida Jean Arthur, et al. (2017). Study of Antagonistic Beneficial Microorganisms to Phytophtora colocasiae, Causal Agent of Taro Mildew (Colocasia esculenta (L.) Schott). Plant, 5(3), 51-60. https://doi.org/10.11648/j.plant.20170503.12

    Copy | Download

    ACS Style

    Asseng Charles Carnot; Ebongo Lobe Emmanuel; Nanda Djomou Giresse Ledoux; Akono Ntonga Patrick; Mbida Jean Arthur, et al. Study of Antagonistic Beneficial Microorganisms to Phytophtora colocasiae, Causal Agent of Taro Mildew (Colocasia esculenta (L.) Schott). Plant. 2017, 5(3), 51-60. doi: 10.11648/j.plant.20170503.12

    Copy | Download

    AMA Style

    Asseng Charles Carnot, Ebongo Lobe Emmanuel, Nanda Djomou Giresse Ledoux, Akono Ntonga Patrick, Mbida Jean Arthur, et al. Study of Antagonistic Beneficial Microorganisms to Phytophtora colocasiae, Causal Agent of Taro Mildew (Colocasia esculenta (L.) Schott). Plant. 2017;5(3):51-60. doi: 10.11648/j.plant.20170503.12

    Copy | Download

  • @article{10.11648/j.plant.20170503.12,
      author = {Asseng Charles Carnot and Ebongo Lobe Emmanuel and Nanda Djomou Giresse Ledoux and Akono Ntonga Patrick and Mbida Jean Arthur and Ngono Ngane Annie and Ambang Zachée and Monkam Tchamaha Fabrice and Djouokep Léonel Gautier},
      title = {Study of Antagonistic Beneficial Microorganisms to Phytophtora colocasiae, Causal Agent of Taro Mildew (Colocasia esculenta (L.) Schott)},
      journal = {Plant},
      volume = {5},
      number = {3},
      pages = {51-60},
      doi = {10.11648/j.plant.20170503.12},
      url = {https://doi.org/10.11648/j.plant.20170503.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.plant.20170503.12},
      abstract = {The cultivation of taro is of great economic and social importance on a global scale. The current orientation towards agricultural production and the serious consequences of the mildew of taro to crops prompts to find alternatives to chemical control. This study aims at selecting in the taro habitat (leaves, rhizosphere) the microorganisms with high antagonistic potential capable of ensuring the biological control of P. colocasiae. Fungus isolated from the taro-infected leaves of the cultivar "Macumba or Ibo coco" from the V8-Agar medium, was kept in pure culture. The different antagonists were obtained by two trapping techniques using P. colocasiae as bait for the associated microorganisms and by the decimal dilution technique. The results reveal fourteen antagonist isolates, including five fungi and two bacteria isolated from the leaves; Against 4 bacteria and 3 fungi at ground level. Identification of the latter identified the presence of Penicillium Sp, Trichoderma Sp, Aspergillus Sp, Pythium Sp., Bacillus Sp, Rhizobium, Streptomyces and seven other unidentified isolates (Ni). The different in vitro tests showed that Rhizobium and Ni4 showed the strongest inhibitions (91.66 and 90.69%). The greenhouse tests showed the high-inhibitory effect of Trichoderma Sp. and Rhizobium, which showed very low foliar alteration percentages (9.65 and 1.86%). These antagonists would be of particular benefit to farmers in the development of biological pesticides.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Study of Antagonistic Beneficial Microorganisms to Phytophtora colocasiae, Causal Agent of Taro Mildew (Colocasia esculenta (L.) Schott)
    AU  - Asseng Charles Carnot
    AU  - Ebongo Lobe Emmanuel
    AU  - Nanda Djomou Giresse Ledoux
    AU  - Akono Ntonga Patrick
    AU  - Mbida Jean Arthur
    AU  - Ngono Ngane Annie
    AU  - Ambang Zachée
    AU  - Monkam Tchamaha Fabrice
    AU  - Djouokep Léonel Gautier
    Y1  - 2017/08/22
    PY  - 2017
    N1  - https://doi.org/10.11648/j.plant.20170503.12
    DO  - 10.11648/j.plant.20170503.12
    T2  - Plant
    JF  - Plant
    JO  - Plant
    SP  - 51
    EP  - 60
    PB  - Science Publishing Group
    SN  - 2331-0677
    UR  - https://doi.org/10.11648/j.plant.20170503.12
    AB  - The cultivation of taro is of great economic and social importance on a global scale. The current orientation towards agricultural production and the serious consequences of the mildew of taro to crops prompts to find alternatives to chemical control. This study aims at selecting in the taro habitat (leaves, rhizosphere) the microorganisms with high antagonistic potential capable of ensuring the biological control of P. colocasiae. Fungus isolated from the taro-infected leaves of the cultivar "Macumba or Ibo coco" from the V8-Agar medium, was kept in pure culture. The different antagonists were obtained by two trapping techniques using P. colocasiae as bait for the associated microorganisms and by the decimal dilution technique. The results reveal fourteen antagonist isolates, including five fungi and two bacteria isolated from the leaves; Against 4 bacteria and 3 fungi at ground level. Identification of the latter identified the presence of Penicillium Sp, Trichoderma Sp, Aspergillus Sp, Pythium Sp., Bacillus Sp, Rhizobium, Streptomyces and seven other unidentified isolates (Ni). The different in vitro tests showed that Rhizobium and Ni4 showed the strongest inhibitions (91.66 and 90.69%). The greenhouse tests showed the high-inhibitory effect of Trichoderma Sp. and Rhizobium, which showed very low foliar alteration percentages (9.65 and 1.86%). These antagonists would be of particular benefit to farmers in the development of biological pesticides.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Faculty of Science, Department of Plant Biology, Laboratory of Plant Biology and Physiology, University of Douala, Douala, Cameroon

  • Faculty of Science, Department of Plant Biology, Laboratory of Plant Biology and Physiology, University of Douala, Douala, Cameroon

  • Faculty of Science, Department of Plant Biology, Laboratory of Plant Biology and Physiology, University of Douala, Douala, Cameroon

  • Faculty of Science, Department of Plant Biology, Laboratory of Plant Biology and Physiology, University of Douala, Douala, Cameroon

  • Faculty of Science, Department of Plant Biology, Laboratory of Plant Biology and Physiology, University of Douala, Douala, Cameroon

  • Faculty of Science, Department of Plant Biology, Laboratory of Plant Biology and Physiology, University of Douala, Douala, Cameroon

  • Faculty of Science, Department of Plant Biology, Laboratory of Phytopathology and Microbiology, University of Yaounde, Yaounde, Cameroon

  • Faculty of Science, Department of Plant Biology, Laboratory of Plant Biology and Physiology, University of Douala, Douala, Cameroon

  • Faculty of Science, Department of Plant Biology, Laboratory of Plant Biology and Physiology, University of Douala, Douala, Cameroon

  • Sections