Animal and Veterinary Sciences

| Peer-Reviewed |

Epididymal Sperm Maturation in Bats with Prolonged Sperm Storage

Received: 28 January 2015    Accepted: 06 February 2015    Published: 16 February 2015
Views:       Downloads:

Share This Article

Abstract

Epididymal sperm maturation is the process through which sperm acquire the potential to fertilize the egg. For most mammals, studies report that this process is completed before the sperm enter the cauda region of the epididymis; however, in some bat species, such as the Mexican big-eared bat (Corynorhinus mexicanus), this does not occur, as the process does not end until the sperm are inside the cauda of the epididymis, and thus is associated with a long storage period.

DOI 10.11648/j.avs.s.2015030101.11
Published in Animal and Veterinary Sciences (Volume 3, Issue 1-1, February 2015)

This article belongs to the Special Issue Advances in Bat’s Reproduction

Page(s) 1-7
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Epididymis, Epididymal Sperm Maturation, Prolonged Sperm Storage, Bats

References
[1] Bernard Robaire, B.T.H., and Marie-Claire Orgebin-Crist, The Epididymis, in Knobil and Neill’s Physiology of Reproduction, J.D. Neill, Editor. 2006.
[2] Fournier-Delpech, S., et al., Epididymal sperm maturation in the ram: motility, fertilizing ability and embryonic survival after uterine artificial insemination in the ewe. Ann. Biol. anim. Bioch Biophys, 1979. 19(3A): p. 597-605.
[3] Brown, D. and R. Montesano, Membrane specialization in the rat epididymis. I. Rod-shaped intramembrane particles in the apical (mitochondria-rich) cell. J Cell Sci, 1980. 45: p. 187-98.
[4] Hinrichsen, M.J. and J.A. Blaquier, Evidence supporting the existence of sperm maturation in the human epididymis. J Reprod Fertil, 1980. 60(2): p. 291-4.
[5] Awano, M., A. Kawaguchi, and H. Mohri, Lipid composition of hamster epididymal spermatozoa. J Reprod Fertil, 1993. 99(2): p. 375-83.
[6] Cooper, T., Epididymis, in Encyclopedia of reproduction, J.D.N. E. Knovil, Editor. 1999. p. 1-17.
[7] Huang, Y., Y.W. Chung, and P.Y. Wong, Potassium channel activity recorded from the apical membrane of freshly isolated epithelial cells in rat caudal epididymis. Biol Reprod, 1999. 60(6): p. 1509-14.
[8] Legare, C., et al., Effect of vasectomy on P34H messenger ribonucleic acid expression along the human excurrent duct: a reflection on the function of the human epididymis. Biol Reprod, 2001. 64(2): p. 720-7.
[9] Vernet, P., et al., Analysis of reactive oxygen species generating systems in rat epididymal spermatozoa. Biol Reprod, 2001. 65(4): p. 1102-13.
[10] Sullivan, R., G. Frenette, and J. Girouard, Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl, 2007. 9(4): p. 483-91.
[11] Oko, R., et al., The cytoplasmic droplet of rat epididymal spermatozoa contains saccular elements with Golgi characteristics. J Cell Biol, 1993. 123(4): p. 809-21.
[12] Aitken, R.J., et al., Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod, 1998. 59(5): p. 1037-46.
[13] Setchell, B. and W. Breed, Anatomy, Vasculature, and Innervation of the Male Reproductive Tract, in Physiology of reproduction, E. Knobil and D. Neill, Editors. 2006, Academic Press: USA. p. 587-596.
[14] Robaire, B. and R.S. Viger, Regulation of epididymal epithelial cell functions. Biology of Reproduction, 1995. 52(2): p. 226-236.
[15] Turner, T.T., et al., Association of segmentation of the epididymal interstitium with segmented tubule function in rats and mice. Reproduction, 2003. 125(6): p. 871-8.
[16] Aitken, R.J., et al., Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl, 2007. 9(4): p. 554-64.
[17] Belleannee, C., et al., Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics, 2011. 11(10): p. 1952-64.
[18] Belleannee, C., et al., Identification of luminal and secreted proteins in bull epididymis. J Proteomics, 2011. 74(1): p. 59-78.
[19] Baker, M.A., et al., Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med, 2012. 58(4): p. 211-7.
[20] Contri, A., et al., Characteristics of donkey spermatozoa along the length of the epididymis. Theriogenology, 2012. 77(1): p. 166-73.
[21] Dacheux, J.L., et al., The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med, 2012. 58(4): p. 197-210.
[22] Amann, R.P. and B.D. Schanbacher, Physiology of male reproduction. Journal of animal science, 1983. 57 Suppl 2: p. 380-403.
[23] Cervantes, M.I., et al., Spermatozoa epididymal maturation in the Mexican big-eared bat (Corynorhinus mexicanus). Syst Biol Reprod Med, 2008. 54(4-5): p. 196-204.
[24] White, D.R. and R.J. Aitken, Influence of epididymal maturation on cyclic AMP levels in hamster spermatozoa. Int J Androl, 1989. 12(1): p. 29-43.
[25] Yeung, C.H., G.F. Weinbauer, and T.G. Cooper, Responses of monkey epididymal sperm of different maturational status to second messengers mediating protein tyrosine phosphorylation, acrosome reaction, and motility. Mol Reprod Dev, 1999. 54(2): p. 194-202.
[26] Vijayaraghavan, S., et al., A Role for Phosphorylation of Glycogen Synthase Kinase-3α in Bovine Sperm Motility Regulation. Biology of Reproduction, 2000. 62(6): p. 1647-1654.
[27] Tardif, S., et al., Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol Reprod, 2001. 65(3): p. 784-92.
[28] Urner, F. and D. Sakkas, Protein phosphorylation in mammalian spermatozoa. Reproduction, 2003. 125(1): p. 17-26.
[29] Naz, R.K. and P.B. Rajesh, Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod Biol Endocrinol, 2004. 2: p. 75.
[30] Lewis, B. and R.J. Aitken, Impact of epididymal maturation on the tyrosine phosphorylation patterns exhibited by rat spermatozoa. Biol Reprod, 2001. 64(5): p. 1545-56.
[31] Rodríguez-Tobón, A., et al., Tyrosine phosphorylation as evidence of epididymal cauda participation in the sperm maturation process of the Corynorhinus mexicanus bat. , in Acta Zoologica-stockholm, In press. 2015.
[32] Baldi, E., et al., Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa. J Androl, 1991. 12(5): p. 323-30.
[33] Baker, M.A., et al., Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation. J Cell Sci, 2004. 117(2): p. 211-22.
[34] Chabory, E., et al., Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. J Anim Sci, 2010. 88(4): p. 1321-31.
[35] Turrens, J.F., Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 2003. 552(2): p. 335-344.
[36] de Lamirande, E., et al., Reactive oxygen species and sperm physiology. Rev Reprod, 1997. 2(1): p. 48-54.
[37] Bauskin, A.R., I. Alkalay, and Y. Ben-Neriah, Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Cell, 1991. 66(4): p. 685-96.
[38] Aitken, R.J., et al., Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci, 1995. 108 (5): p. 2017-25.
[39] Leclerc, P., E. de Lamirande, and C. Gagnon, Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med, 1997. 22(4): p. 643-56.
[40] Caselli, A., et al., The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J Biol Chem, 1998. 273(49): p. 32554-60.
[41] Aitken, R.J., Possible redox regulation of sperm motility activation. J Androl, 2000. 21(4): p. 491-6.
[42] Baker, M.A. and R.J. Aitken, The importance of redox regulated pathways in sperm cell biology. Mol Cell Endocrinol, 2004. 216(1-2): p. 47-54.
[43] Ford, W.C., Regulation of sperm function by reactive oxygen species. Hum Reprod Update, 2004. 10(5): p. 387-99.
[44] Arenas-Ríos, E., Enzimas anti-especies reactivas de oxígeno, como reguladores en los procesos de espermatogénesis maduración y almacenamiento prolongado de espermatozoides en el murciélago Corynorhinus mexicanus. . 2009, Universidad Autónoma Metropolitana México.
[45] Baker, M.A., et al., Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biol Reprod, 2005. 73(2): p. 334-42.
[46] Baker, M.A., et al., Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin Appl, 2007. 1(5): p. 524-32.
[47] Alvarez, J.G. and B.T. Storey, Role of superoxide dismutase in protecting rabbit spermatozoa from O2 toxicity due to lipid peroxidation. Biol Reprod, 1983. 28(5): p. 1129-36.
[48] Nissen, H.P. and H.W. Kreysel, Superoxide dismutase in human semen. Klinische Wochenschrift, 1983. 61(1): p. 63-65.
[49] Alvarez, J.G., et al., Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl, 1987. 8(5): p. 338-48.
[50] Alvarez, J.G. and B.T. Storey, Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res, 1989. 23(1): p. 77-90.
[51] Jeulin, C., et al., Catalase activity in human spermatozoa and seminal plasma. Gamete Res, 1989. 24(2): p. 185-96.
[52] Halliwell, B. and J.M.C. Gutteridge, Free Radicals in Biology and Medicine. 2007: Oxford University Press.
[53] Zini, A., E. de Lamirande, and C. Gagnon, Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl, 1993. 16(3): p. 183-8.
[54] Arenas-Ríos, E., et al., Superoxide dismutase, catalase, and glutathione peroxidase during epididymal maturation and prolonged storage of spermatozoa in the Mexican big-eared bat (Corynorhinus mexicanus). Canadian Journal of Zoology, 2005. 83(12): p. 1556-1565.
[55] Crichton, E.G. and P.H. Krutzsch, Reproductive Biology of Bats. 2000: Elsevier Science.
[56] Krutzsch, P.H., The Reproductive Biology of the Cave Myotis (Myotis velifer). Acta Chiropterologica, 2009. 11(1): p. 89-104.
[57] Sharifi, M., et al., Evidence of sperm storage in Pipistrellus kuhlii (Chiroptera: Vespertilionidae) in western Iran. Folia Zoologica, 2004. 53: p. 1–6.
[58] Sharifi, M., V. Akmali, and G. Rostam, Evidence of sperm storage in Myotis capaccinii (Chiroptera: Vespertilionidae) in western Iran. . Journal of Veterinary Research, 2008. 63(2): p. 63–67.
[59] Wang, Z., et al., Epididymal sperm storage in Rickett's big-footed bat (Myotis ricketti). Acta Chiropterologica, 2008. 10(1): p. 161-167.
[60] León-Galván, M.A., et al., Male reproductive cycle of mexican big-eared bats, corynorhinus mexicanus (chiroptera: vespertilionidae). The Southwestern Naturalist, 2005. 50(4): p. 453-460.
[61] Gustafson, A.W., Male reproductive patterns in hibernating bats. J Reprod Fertil, 1979. 56(1): p. 317-31.
[62] Krishna, A. and K. Singh, The relationship between testicular activity, accessory sex glands, and circulating steroid concentration during the reproductive cycle in a male Indian vespertilionid bat, Scotophilus heathi. Canadian Journal of Zoology, 1997. 75(7): p. 1042-1050.
[63] Krishna, A. and K. Singh, Changes in the thyroid gland during the reproductive cycle of the male vespertilionid bat, Scotophilus heathi. Revista Brasileira de Biologia, 1998. 58: p. 707-716.
[64] Krishna, A. and K. Singh, Asynchrony of the reproductive organs of the male vespertilionid bat, Scotophilus heathi: role of gonadotrophins. Acta Theriologica 1999. 44(2): p. 123-131.
[65] Racey, P.A., The prolonged storage and survival of spermatozoa in Chiroptera. J Reprod Fertil, 1979. 56(1): p. 391-402.
[66] Crichton, E.G., et al., Unique features of the cauda epididymidal epithelium of hibernating bats may promote sperm longevity. Anat Rec, 1993. 237(4): p. 475-81.
[67] Crichton, E.G., et al., Hyperosmolality and sperm storage in hibernating bats: prolongation of sperm life by dehydration. Am J Physiol, 1994. 267(5-2): p. R1363-70.
[68] Krutzsch, P.H., Male reproductive patterns in nonhibernating bats. J Reprod Fertil, 1979. 56(1): p. 333-44.
[69] Jolly, S.E. and A.W. Blackshaw, Prolonged epididymal sperm storage, and the temporal dissociation of testicular and accessory gland activity in the common sheath-tail bat, Taphozous georgianus, of tropical Australia. J Reprod Fertil, 1987. 81(1): p. 205-11.
[70] Wimsatt, W., Some problems of reproduction in relation to hibernation in bats. . Bulletin of the Museum of Comparative Zoology Harvard 1960. 124: p. 249-267.
[71] Crichton, E.G., P.H. Krutzsch, and R. Yanagimachi, Stability of the sperm plasma membrane of hibernating bats (Myotis velifer) compared with other mammals. J Reprod Fertil, 1993. 97(1): p. 1-4.
[72] León-Galvan, M.A., et al., Prolonged storage of spermatozoa in the genital tract of female Mexican big-eared bats (Corynorhinus mexicanus): the role of lipid peroxidation. Canadian Journal of Zoology, 1999. 77(1): p. 7-12.
[73] Rodríguez-Tobón, A., Análisis macro y micro estructural del epidídimo en relación con la maduración y almacenamiento de espermatozoides en el murciélago estacional Corynorhinus mexicanus. . 2011, Universidad Autónoma Metropolitana México.
[74] Holland, M.K., J.T. Vreeburg, and M.C. Orgebin-Crist, Testicular regulation of epididymal protein secretion. J Androl, 1992. 13(3): p. 266-73.
[75] Robaire, B., B. Hinton, and C. Orgebin-Crist, The Epididymis: From Molecules to Clinical Practice: From Molecules to Clinical Practice: a Comprehensive Survey of the Efferent Ducts, the Epididymis and the Vas Deferens. 2001: Springer US.
Author Information
  • Postgraduate in Experimental Biology, Autonomous Metropolitan University–Iztapalapa, Iztapalapa, México

  • Department of Biology, Autonomous Metropolitan University–Iztapalapa, Iztapalapa, México

  • Department of Biology of Reproduction, Autonomous Metropolitan University–Iztapalapa, Iztapalapa, México

Cite This Article
  • APA Style

    Rodríguez-Tobón Ahiezer, León-Galván Miguel A., Arenas-Ríos Edith. (2015). Epididymal Sperm Maturation in Bats with Prolonged Sperm Storage. Animal and Veterinary Sciences, 3(1-1), 1-7. https://doi.org/10.11648/j.avs.s.2015030101.11

    Copy | Download

    ACS Style

    Rodríguez-Tobón Ahiezer; León-Galván Miguel A.; Arenas-Ríos Edith. Epididymal Sperm Maturation in Bats with Prolonged Sperm Storage. Anim. Vet. Sci. 2015, 3(1-1), 1-7. doi: 10.11648/j.avs.s.2015030101.11

    Copy | Download

    AMA Style

    Rodríguez-Tobón Ahiezer, León-Galván Miguel A., Arenas-Ríos Edith. Epididymal Sperm Maturation in Bats with Prolonged Sperm Storage. Anim Vet Sci. 2015;3(1-1):1-7. doi: 10.11648/j.avs.s.2015030101.11

    Copy | Download

  • @article{10.11648/j.avs.s.2015030101.11,
      author = {Rodríguez-Tobón Ahiezer and León-Galván Miguel A. and Arenas-Ríos Edith},
      title = {Epididymal Sperm Maturation in Bats with Prolonged Sperm Storage},
      journal = {Animal and Veterinary Sciences},
      volume = {3},
      number = {1-1},
      pages = {1-7},
      doi = {10.11648/j.avs.s.2015030101.11},
      url = {https://doi.org/10.11648/j.avs.s.2015030101.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.avs.s.2015030101.11},
      abstract = {Epididymal sperm maturation is the process through which sperm acquire the potential to fertilize the egg. For most mammals, studies report that this process is completed before the sperm enter the cauda region of the epididymis; however, in some bat species, such as the Mexican big-eared bat (Corynorhinus mexicanus), this does not occur, as the process does not end until the sperm are inside the cauda of the epididymis, and thus is associated with a long storage period.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Epididymal Sperm Maturation in Bats with Prolonged Sperm Storage
    AU  - Rodríguez-Tobón Ahiezer
    AU  - León-Galván Miguel A.
    AU  - Arenas-Ríos Edith
    Y1  - 2015/02/16
    PY  - 2015
    N1  - https://doi.org/10.11648/j.avs.s.2015030101.11
    DO  - 10.11648/j.avs.s.2015030101.11
    T2  - Animal and Veterinary Sciences
    JF  - Animal and Veterinary Sciences
    JO  - Animal and Veterinary Sciences
    SP  - 1
    EP  - 7
    PB  - Science Publishing Group
    SN  - 2328-5850
    UR  - https://doi.org/10.11648/j.avs.s.2015030101.11
    AB  - Epididymal sperm maturation is the process through which sperm acquire the potential to fertilize the egg. For most mammals, studies report that this process is completed before the sperm enter the cauda region of the epididymis; however, in some bat species, such as the Mexican big-eared bat (Corynorhinus mexicanus), this does not occur, as the process does not end until the sperm are inside the cauda of the epididymis, and thus is associated with a long storage period.
    VL  - 3
    IS  - 1-1
    ER  - 

    Copy | Download

  • Sections