Application of Microsatellite Molecular Markers in Studies of Genetic Diversity and Conservation of Plant Species of Cerrado
Journal of Plant Sciences
Volume 1, Issue 1, June 2013, Pages: 1-5
Received: May 13, 2013; Published: Jun. 10, 2013
Views 3411      Downloads 209
Author
Lia Maris Orth Ritter Antiqueira, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz (Esalq/USP), Piracicaba, São Paulo, Brazil
Article Tools
PDF
Follow on us
Abstract
Advances in molecular biology in recent decades and the growing interest of the scientific community in assessing the genetic consequences of habitat fragmentation on species have allowed the creation of new perspectives for research on population genetics, where biodiversity is investigated by means of molecular diversity. The initiatives for conservation genomics have been invaluable to delineate effective strategies for genetic conservation in the short and long term. In this paper we discuss the use of microsatellite molecular markers in studies of genetic diversity focused on species of Cerrado. Markers are highly informative and occur profusely in the genome of plants. Despite the high costs involved in developing microsatellites, their use has grown exponentially in reproductive ecology, conservation and population management. This tool allows the identification of the reproductive system of species and possible hybridizations, as well as the estimation of genetic risks of extinction, detection of vulnerable populations and determination of the minimum viable area of conservation, among others.
Keywords
Conservation Genetics, Genetic Diversity, Genetic Landscape, SSR
To cite this article
Lia Maris Orth Ritter Antiqueira, Application of Microsatellite Molecular Markers in Studies of Genetic Diversity and Conservation of Plant Species of Cerrado, Journal of Plant Sciences. Vol. 1, No. 1, 2013, pp. 1-5. doi: 10.11648/j.jps.20130101.11
References
[1]
Solé-Cava, A.M., Biodiversidade molecular e genética da conservação, in Biologia Molecular e Evolução, S.R. Matioli, Editor. 2001, Holos: Ribeirão Preto. p. 172-192.
[2]
Torres, R.A., Novas fronteiras da biologia da conservação: a era da genômica. Natureza e Conservação, 2003. 2: p. 16-18.
[3]
Nei, M., Molecular evolutionary genetics. 1987, New York: Columbia University Press.
[4]
Avise, J.C., Molecular markers, natural history and evolution. 1994, New York, Chapman & Hall, 511 p.
[5]
Manel, S., et al., Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology and Evolution, 2003. 18: p. 189-197.
[6]
Holderegger, R.; Wagner, H.H. A brief guide to landscape genetics. Landscape Genetics, 2006. 21: p. 793-796.
[7]
Guillot, G.I., Mortier, F.; Estoup, A. Geneland: a computer package for landscape genetics. Molecular Ecology Notes, 2005. 5(4): p. 712-715.
[8]
Storfer, A., et al., Putting the "landscape" in landscape genetics. Heredity, 2007. 98(3): p. 128-42.
[9]
Ouborg, N.J., Mix,c. The rough edges of the conservation genetics paradigm for plants. Journal of Ecology, 2006. 94(6): p. 1233-1248.
[10]
Sebbenn, A.M., Distribuição da variação genética de populações de jequitibá-rosa Cariniana legalis (Mart.) O. Ktze por caracteres quantitativos e isoenzimas, 2001.Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz: Piracicaba. 210p.
[11]
Telles, M.P.C., et al., Caracterização genética de populações naturais de araticunzeiro (Annona crassiflora Mart. - Annonaceae) no Estado de Goiás. Revista Brasileira de Botânica, 2003. 26: p. 123-129.
[12]
Ferreira, M.E.; Grattapaglia, D. Introdução ao uso de marcadores moleculares em análise genética. 1998, Brasília: Embrapa Cenargen. 220p.
[13]
Litt, M.; Luty, J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics, 1989. 44(3): p. 397-401.
[14]
Jarne, P.; Lagoda, P. Microsatellites, form molecules to populations and back. Trends in Evolution and Ecology, 1996. 11: p. 424-429.
[15]
Zucchi, M.I., et al., Genetic structure and gene flow in Eugenia dysenterica DC in the Brazilian Cerrado utilizing SSR markers Genetics and Molecular Biology, 2003. 26(4): p. 449-457.
[16]
Rafalski, D.J.A., et al., Generating and using DNA markers in plant, in Non-mammalian genomic analysis: a practical guide, B. Birren and E. Lai, Editors. 1996, Academic: New York. p. T75-134.
[17]
Yang, G.P., et al. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Molecular Genetics and Genomics, 1994. 245(2): p. 187-94.
[18]
Melo, V.J.R. Determinação de paternidade em pomares de sementes de Eucalyptus com marcadores microssatélites, in Escola de Agronomia. 2000, Universidade de Goiás.
[19]
White, G.M., D.H. Boshier, D.H.; Powell, W. Genetic variation within a fragmented population of Swietenia humilis Zucc. Molecular Ecology, 1999. 8(11): p. 1899-1909.
[20]
Dayanandan, S., et al. Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Mol Ecol, 1999. 8(10): p. 1585-92.
[21]
Collevatti, R.G., D. Grattapaglia, D.; Hay, J.D. Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Molecular Ecology, 2001. 10(2): p. 349-56.
[22]
Sano , J.M., Almeida, S.P.; Ribeirjo,J.F. Cerrado: Ambiente e flora. ed. J.M. Sano, J.M. Almeida, S.P.; Ribeirjo,J.F. 2008, Brasilia: Embrapa Informação Tecnológica.
[23]
Myers, N., et al., Biodiversity hotspots for conservation priorities. Nature, 2000. 403(6772): p. 853-8.
[24]
Machado, R.B., et al., Estimativas de perda da área do Cerrado brasileiro, Conservation International, Editor. 2004: Brasilia. p. 26.
[25]
Martins, K., et al., Mating system and fine-scale spatial genetic structure of Solanum lycocarpum St.Hil. (Solanaceae) in the Brazilian Cerrado. Conservation Genetics, 2006. 7(6): p. 957-969.
[26]
Vencovsky, R., Tamanho efetivo populacional na coleta e preservação de germoplasmas de espécies alógamas. IPEF, 1987. 35: p. 79-84.
[27]
Collevatti, R.G., Grattapaglia, D.; Hay, J.D. High resolution microsatellite based analysis of the mating system allows the detection of significant biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity, 2001. 86(Pt 1): p. 60-7.
[28]
Moares, M.L.T., Kageyama, P.Y.; Sebbenn, A.M. Sistema de reprodução em pequenas populações fragmentadas e em árvores isoladas de Hymenaea stigonocarpa.Scientia Forestalis, 2007. 74: p. 75-86.
[29]
Kageyama, P.Y., et al. Conseqüências genéticas da fragmentação sobre populações de espécies arbóreas. Série Técnica IPEF, 1998. 12(32): p. 65-70.
[30]
Collevatti, R.G., Brondani, R.V., Grattapaglia, D. Development and characterization of microsatellite markers for genetic analysis of a Brazilian endangered tree species Caryocar brasiliense. Heredity, 1999. 83 ( Pt 6): p. 748-56.
[31]
Ciampi, A.Y., Brondani, R., Grattapaglia, D. Desenvolvimento de marcadores microssatélites para Copaifera langsdorffii Desf. (Caesalpinoideae) e otimização de sistemas fluorescentes de genotipagem multiloco. Embrapa, 2000. 16: p. 1-40.
[32]
Braga, A.C., et al. Developmentand characterization of microsatellite markers for the tropical tree species Tabebuia aurea (Bignoniaceae). Molecular Ecology Notes 2007. 7: p. 53-56.
[33]
Haber, L.H.,et al. Development and characterization of microsatellite markers for Lychnophora pinaster: a study for the conservation of a native medicinal plant. Molecular Ecology and Resources, 2009. 9(3): p. 811-4.
[34]
Grando, C., Aspectos da demografia do cajueiro do campo (Anacardium humile) em áreas de Cerrado do Estado de São Paulo e construção de bibliotecas enriquecidas de microssatélites para a espécie , 2009. Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz: Piracicaba. p. 77.
[35]
Telles, M.P., et al., Development of microsatellite markers for the endangered Neotropical tree species Tibouchina papyrus (Melastomataceae). Genetics and Molecular Resources, 2011. 10(1): p. 321-5.
[36]
Ritter, L.M.O., et al., Development of microsatellite markers for Qualea grandiflora Mart (Vochysiaceae), typical species of Brazilian Cerrado. American Journal of Botany, e97-e98, 2012.
[37]
Collevatti,R.G., Grattapaglia,D. Hay, J.D. Evidences for multiple maternal lineages of Caryocar brasiliense populations in the Brazilian Cerrado based on the analysis of chloroplast DNA sequences and microsatellite haplotype variation. Molecular Ecology, 2003. 12(1): p. 105-15.
[38]
Soares, T.N., et al., Landscape conservation genetics of Dipteryx alata ("baru" tree: Fabaceae) from Cerrado region of central Brazil. Genetica, 2008. 132(1): p. 9-19.
[39]
Tarazi, R., et al., High levels of genetic differentiation and selfing in the Brazilian cerrado fruit tree Dipteryx alata Vog. (Fabaceae). Genetics and Molecular Biologyl, 2010. 33(1): p. 78-85.
[40]
Souza, R.G.V. C. Importância da conservação in situ de Copaifera langsdorffii Desf. em remanescentes de Cerrado de propriedades particulares rurais, in Ciências Florestais. 2011, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz: Piracicaba. 77p.
[41]
Tarazi, R. Diversidade genética, estrutura genética espacial, sistema de reprodução e fluxo gênico em Copaifera langsdorffii Desf no Cerrado, 2009. Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz: Piracicaba. 139 p.
[42]
Moreno, M.A., et al., Estrutura genética espacial em populações de Hymenaea stigonacarpa Mart. ex Hayne mediante a utilização de marcadores microssatélites cloroplastidiais. Scientia Forestalis, 2009. 37: p. 513-523.
[43]
Moreira, P.A., Fernandes G.W.,Collevatti, R.G. Fragmentation and spatial genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry Neotropical tree. Forest Ecology and Management, 2009. 258: p. 2690–2695.
[44]
Silva, M.C., Diversidade genética, sistema de reprodução, estrutura genética espacial e fluxo gênico de Tabebuia aurea (Silva Manso) Benth & Hook ex S. Moore no Cerrado, 2011. Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz: Piracicaba. 162p.
[45]
Frankel, O.H.; Soulé, M.S. Conservation and evolution. 1981, Cambridge: Cambridge University Press.
[46]
Weir, B.S. Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution, 1984. 38(6): p. 1358-1370.
[47]
Conte, R., Estrutura genética de populações de Euterpe edulis Mart. submetidas à ação antrópica utilizando marcadores alozímicos e microssatélites, 2004. Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz: Piracicaba. 124p.
[48]
Futuyma, D.J., Biologia Evolutiva. 1992, Ribeirão Preto: Sociedade Brasileira de Genética.
[49]
Botstein, D., et al., Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 1980. 32(3): p. 314-31.
[50]
Crandall KA, et al. Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution, 2000, 17, 390-395
[51]
Moritz C. Defining Evolutionary significant units for conservation. Trends in Ecology and Evolution, 1994, 9, 373-375.
[52]
Kageyama, P.Y., et al. Biodiversidade e Restauração da Floresta Tropical. 2003, Botucatu: FEPAP.
[53]
Azevedo, V.C.R., Desenvolvimento e aplicações de microssatélites, análise de cpDNA e modelagem computacional para estudo da estrutura e dinâmica genética de maçaranduba - Manilkara huberi (Ducke) A. Chev. Sapotaceae. 2006, Universidade de Brasília: Brasília.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186