Carpel – Fruit in a Coniferous Genus Araucaria and the Enigma of Angiosperm Origin
Journal of Plant Sciences
Volume 2, Issue 5, October 2014, Pages: 159-166
Received: Sep. 9, 2014; Accepted: Sep. 19, 2014; Published: Sep. 30, 2014
Views 3833      Downloads 202
Valentin Krassilov, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
Sophia Barinova, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
Article Tools
Follow on us
Reproductive morphology of araucarian samara is revised revealing a carpellate structure of the stone. In A. columnaris it is formed by a supercoiled spermophyll (‘seed scale’), with a stigmatic apical lobe. This structure is analogous to the ‘classical’ peltate carpel of flowering plants. Stone opens with two apical pores. Pollen germinates on the apical stigmatic crest, with extracellular matter exuded from a stigmatic gland and its opposite on the bract apophysis. Ovulate structures are of the same basic type in the allied genera Wollemia and Pararaucaria. Neither of these genera is morphologically ‘transitional’ at the generic as well as familial levels thus setting araucarians apart from the rest of conifers no longer conceivable as a uniquely derived clade of gymnospermous plants. Araucarians thus deserve the status of a separate order anticipating the major evolutionary advancements of angiospermy in flowering plants.
Plant Morphology, Paleobotany, Conifers, Araucariaceae, Carpel, Angiosperm Origin, Fossil Gymnosperms, Evolutionary Parallelism
To cite this article
Valentin Krassilov, Sophia Barinova, Carpel – Fruit in a Coniferous Genus Araucaria and the Enigma of Angiosperm Origin, Journal of Plant Sciences. Vol. 2, No. 5, 2014, pp. 159-166. doi: 10.11648/j.jps.20140205.13
V. Krassilov, Angiosperm origins: morphological and ecological aspects. Sofia: Pensoft, May 1997, 270 pp.
W. Troll, “Morphologie der schildförmigen Blätter,“ Planta, vol. 17, pp. 153–314, 1932.
H. Baum, “Der Bau des Karpellstiels von Grevillea thelamanniana und seine Bedeutung für die Beteilung der epeltaten Karpelle,“ Phytomorphology, vol. 2, pp. 191–197, 1952.
W. Leinfellner, “Beiträge zur Kronblattmorphologie VIII. Der peltate Bau der Nektarblätter von Ranunculus, dargelegt anhand yener von Ranunculus pallasii Schlecht,“ Östr. Bot. C., Bd. 105, S. 184–192, 1958.
O. Rohweder, “Karpellbau und Synkarpie bei Ranunculaceen,“ Ber. Schweiz. Bot. Ges., vol. 77, pp. 376–432, 1967.
M. Guédés, “Carpel peltation and syncarpy in Coriaria ruscifolia L.,” New Phytol., vol. 70, pp. 213–227, 1971.
F. Weberling, Morphology of flowers and inflorescences. (Translated by R. J. Pankhurst). New York: Cambridge University Press, 1989.
X.-L.Yan, Y. Ren, X.-H. Tian, and X.-H. Zhang, “Morphogenesis of pistillate flowers of Cercidiphyllum japonicum (Cercidiphyllaceae),” J. Integrative Plant Biol., vol. 49(9), pp. 1400–1408, 2007.
V. Krassilov, Cercidiphyllum and fossil allies: morphological interpretation and general problems of plant evolution and development. Sofia–Moscow: Pensoft Publishers, 2010, 151 pp.
R. J. Haines, N. Prakash, and D. G. Nikles, “Pollination in Araucaria Juss,” Australian J. Bot., vol. 32, pp. 583–594, 1984.
J.N. Owens, T. Takaso, and C. J. Runions, “Pollination in conifers,” Trends in Plant Science, vol. 3, pp. 479–485, 1998.
Y. Mangla, R. Tandon, S. Goel, and S.N. Raina, “Structural organization of the gynoecium and pollen tube path in Himalayan sea buckthorn, Hippophae rhamnoides (Elaeagnaceae),” AoB PLANTS, vol. 5, pp. 1–11, 2013.
T. L. Sage, K. Hristova-Sarkovski, K. Koehl, J. Lyew, V. Pontieri, P. Bernhardt, P. Weston, S. Bagha, and G. Chiu, “Transmitting tissue architecture in basal-relictual angiosperms: implications for transmitting tissue origins. Amer,” J. Bot., vol. 96(1), pp. 183–206, 2009.
T. C. Chambers, A. N. Drinnan, and S. McLoughlin, “Some morphological features of Wollemi pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils,” Int. J. Plant Sci., vol. 159 (1), pp. 160–171, 2006.
M. E. Dettmann, H. T. Clifford, and M. Peters, “Emwadea microcarpa gen. et sp. nov.—anatomically preserved araucarian seed cones from the Winton Formation (late Albian), western Queensland, Australia,” Alcheringa, vol. 36 (2), pp. 217–237, 2012.
R. W. J. M. van der Ham, J.W.M. Jagt, S. Renkens, and J. H. A. van Konijnenburg-van Cittert, “Seed-cone scales from the upper Maastrichtian document the last occurrence in Europe of the Southern Hemisphere conifer family Araucariaceae,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 291, pp. 469–473, 2010.
V. A. Krassilov, Tsagayan flora of the Amur Province. Moscow: Nauka, 1976, 92 pp.
G. R. Wieland, “The Cerro Cuadrado petrified forest,” Publ. Carnegie Inst. Washington, vol. 449, 1935.
M.G. Calder, “A coniferous petrified forest in Patagonia,” Bull. Brit. Mus. (Nat. Hist.) Geol., vol. 2, pp. 99–138, 1953.
R. Stockey, “Reproductive biology of the Cerro Cuasrado (Jurassic) fossil conifers: Pararaucaria patagonica,” Amer. J. Bot., vol. 64(6), pp. 733–744, 1977.
R. A. Stockey, J. Kvaček, R. S. Hill, G. W. Rothwell, and Z. Kvaček, “Fossil record of Cupressaceaea s. lat.” in A. Farjon, Ed. A monograph of Cupressaceae and Sciadopitys, pp. 54–68. Kew, Royal Botanical Gardens, 2005.
A. R. T. Spencer, P. Kenrick, D. C. Steart, R. J. Garwood, J. Hilton, M. C. Munt, and J. Needham, “An exceptional three-dimensionally preserved Pararaucaria (Cheirolepidiaceae) ovuliferous cone from the Late Cretaceous of southern England: non-destructive recovery of full anatomical and histological detail using Diamond Light Source synchrotron,” Abstract Book of the 9th European Palaeobotany – Palynology Conference, Padova, Italy, 26–31 August, 2014, pp. 255–256.
T. N. Taylor, E. L. Taylor, and M. Krings, Paleobotany: The biology and evolution of fossil plants. Amsterdam: Academic Press, Elsevier, 2009, 1252 pp.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186