Carbon and Nitrogen Stocks of a Typic Acrudox under Different Land Use Systems in São Paulo State of Brazil
Journal of Plant Sciences
Volume 2, Issue 5, October 2014, Pages: 192-200
Received: Sep. 10, 2014; Accepted: Sep. 27, 2014; Published: Oct. 10, 2014
Views 3241      Downloads 186
Authors
Valdinei Tadeu Paulino, Institute of Animal Science, Rua Heitor Penteado, 56. 13460-000, Centro, Nova Odessa, São Paulo State, Brazil
Marcos Siqueira Neto, University of São Paulo, Center of Nuclear Energy in the Agriculture (CENA/USP). PO Box, 96, 13400-970, Piracicaba, São Paulo State, Brazil
Erika Maria Lima Celegato Teixeira, Institute of Animal Science, Rua Heitor Penteado, 56. 13460-000, Centro, Nova Odessa, São Paulo State, Brazil
Keila Maria Roncato Duarte, Institute of Animal Science, Rua Heitor Penteado, 56. 13460-000, Centro, Nova Odessa, São Paulo State, Brazil
Alan Joseph Franzluebbers, USDA - Agricultural Research Service - 3218 Williams Hall, Campus Box 7619, NCSU - Raleigh NC 27695-7619
Article Tools
Follow on us
Abstract
Soil organic matter affects physical, chemical and biological conditions, and has been used as a soil quality index to differentiate the effects of different land uses and management practices. The objective of this study was to evaluate soil stocks of C and N under different land uses (conventional-tillage cropping, integrated crop-livestock system, and permanent pasture). The study area was located at the Institute of Animal Science in the municipality of Nova Odessa, São Paulo State (Brazil), with soil classified as Typic Acrudox with medium texture. Land use systems were: (1) integrated crop-livestock with maize and Urochloa brizantha cv. Marandu; (2) integrated crop-livestock with maize and U. ruziziensis; (3) integrated crop-livestock with maize and U. brizantha cv. Piatã; (4) long-term (25-yr-old) pasture with U. brizantha; and (5) conventional-tillage cropping with– maize only. The results showed that (to the layer 0-40 cm depth) the integrated crop-livestock systems (ICLS) had greater soil organic C (52.4 Mg ha-1) and N (4.3 Mg ha-1) than cropping (46.5 Mg C ha-1 and 4.0 Mg N ha-1) only or pasture only (47.6 Mg C ha-1 and 3.9 Mg N ha-1). The rotation with U. brizantha cv. Piatã had lower soil organic C (48.5 Mg ha-1) and N (3.9 Mg ha-1) than with U. brizantha cv. Marandu (56.2 Mg C ha-1 and 4.5 Mg N ha-1) and U. ruziziensis (56.6 Mg C ha-1 and 4.6 Mg N ha-1). These results suggest that integrated crop-livestock systems can be used to improve soil organic matter, and may have additional benefits in sustaining agricultural production in areas experiencing degradation from continuously grazed pastures.
Keywords
Conventional Tillage, Integrated Crop-Livestock System, Urochloa brizantha, Urochloa ruziziensis
To cite this article
Valdinei Tadeu Paulino, Marcos Siqueira Neto, Erika Maria Lima Celegato Teixeira, Keila Maria Roncato Duarte, Alan Joseph Franzluebbers, Carbon and Nitrogen Stocks of a Typic Acrudox under Different Land Use Systems in São Paulo State of Brazil, Journal of Plant Sciences. Vol. 2, No. 5, 2014, pp. 192-200. doi: 10.11648/j.jps.20140205.17
References
[1]
Craswell, E. T., Lefroy, R. D. B., 2001. The role and function of organic matter in tropical regions. Nutrient Cycling in Agroecosystems, 61, 7–18.
[2]
Mielniczuk, J., 2008. Matéria orgânica e a sustentabilidade dos sistemas agrícolas. In: Santos, G. A., Silva, L. S., Canellas, L. P., Camargo, F. A. O. (Eds). Fundamentos da matéria orgânica do solo - ecossistemas tropicais e subtropicais. 2.ed. Porto Alegre, Metrópole, p.1-5.
[3]
Lal, R., 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy, 36, 33–39.
[4]
Souza, E. D., Andrade Costa, S. E. V. G, Anghinoni, I., Carvalho, P. C. F., Andrigueti, M., Cao, E., 2009. Estoques de carbono orgânico e de nitrogênio no solo em sistema de integração lavoura-pecuária em plantio direto, submetido a intensidades de pastejo. Revista Brasileira de Ciência do Solo, 33, 1829-1836.
[5]
Angers, D. A., Eriksen-Hamel, N. S., 2008. Full inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Science Society of American Journal, 72, 1370-1374.
[6]
Luo, Z., Wang, E., Sun, O. J., 2010. Can no-tillage stimulate carbon sequestration in agricultural soil? A meta-analysis of paired experiments. Geoderma, 155, 211-223.
[7]
Sanchez, P. A., Logan, T. J., 1992. Myths and science about the chemistry and fertility of soils in the tropics. In: Lal, R., Sanchez, P. A. (Ed.). Myths and science of soil of the tropics. Madison: SSSA/ASA, p. 35-46. (Special Publication, 29).
[8]
Dias-Filho, M. B., 2007. Degradação de pastagens: processos, causas e estratégias de recuperação. 3 ed. Belém: Embrapa, Amazônia Oriental, 190 p.
[9]
Castro Filho, C., Henklain, J. C., Vieira, M. J., Casão Jr,, R., 1991. Tillage methods and soil and wate conservation in southern in Brazil. Soil Tillage Research, 20, 271-283.
[10]
Assman, T. S., Ronzelli, P., Moraes, A., Assmann, A. L., Koehler, H. S., Sandini, I., 2003. Rendimento de milho em área de integração lavoua-pecuária sob o sistema plantio direto, em presença e ausência de trevo branco, pastejo e nitrogênio. Revista Brasileira de Ciência do Solo, 27, 675-683.
[11]
Barducci, R. S., Costa, C., Crusciol, C. A. C., Borghi, E., Putarov, T. C., Sarti, L. M. N., 2009. Produção de Urochloa brizantha e Panicum maximum com milho e adubação nitrogenada. Archivos de Zootecnia, 58, 211-222.
[12]
Kluthcousk, J., Cobucci, T., Aidar, H., Yokoyama, L.P., Oliveira, I. P. Costa, J. L. S., Silva, J. G., Vilela, L., Barcellos, A. O., Magnabosco, C. U., 2000. Sistema Santa Fé – Tecnologia Embrapa: integração lavoura-pecuáriaq pelo consorcio de culturas anuais com forrageiras, em áreas de lavoura, no sistema direto e convencional. 28 p. (Circular Técnica, 38).
[13]
Salton, J.C., Mielniczuk, J., Bayer, C., Fabrício, A.C., Macedo, M.C.M., Broch, D.L., 2011. Teor e dinâmica do carbono no solo em sistemas de integração lavoura-pecuária. Pesquisa Agropecuária Brasileira, 46, 1349-1356.
[14]
Machado, P. L. O. A., Freitas, P. L., 2004. No-till farming in Brazil and its impact on food security and environmental quality. In: Lal, R., Hobbs, N. Uphoff, D. O., Hansen, R. (Eds.). Sustainable agriculture and the international rice–wheat system. Marcel Dekker: New York, pp. 291–310.
[15]
Madari, B., Machado, P. L. O. A., Torres, E., Andrade, A. G., Valencia, L. I. O., 2005. No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil and Tillage Research, 80, 185–20.
[16]
Roth, C. H., Meyer, B., Frede H. G., Derpsch, R., 1986. The effect of different soybean tillage systems on infiltrability and erosion susceptibility of an Oxisol in Paraná, Brazil. Journal of Agronomy and Crop Science, 157, 217–226.
[17]
Muzilli, O., 1983. Influência do sistema de plantio direto, comparado ao convencional, sobre a fertilidade da camada arável do solo. Revista Brasileira de Ciência do Solo, 7, 95-102.
[18]
Bell, D. E., Shelman, M., 2006. Monsanto: realizing biotech value in Brazil. Harvard Business School NS-507-218. Boston, Harvard Business School Publishing.
[19]
Allard, V., Soussana, J. F., Falcimagne, R., Berbigier, P., Bonnefone, J. M., Ceschia, E., D`Hour, P., Henault, C., Laville, P., Martin, C., Pinares-Pinato, C., 2007. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grasslands. Agriculture, Ecosystems and Environment, 121, 47-58.
[20]
Carvalho, J. L. N., Raucci, G. S., Cerri, C. E. P., Bernoux, M., Feigl, B. J., Wruck, F. J., Cerri, C. C. 2010. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil and Tillage Research, 110, 175–186.
[21]
Silva, J. E., Resck, D. V. S., Corazza, E. J., Vivaldi, L., 2004. Carbon storage in clayey oxisol cultivated pasturs in the “Cerrado” region, Brazil. Agriculture Ecosystems and Enviroment, 103, 357-363.
[22]
Maia, S. M. F., Ogle, S. M. , Cerri, C. C., Cerri, C. E. P. 2010. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil & Tillage Research, 106, 177-184
[23]
Soil Survey Staff., 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.
[24]
Corazza, E. J.; Silva, J. E.; Resck, D. V. S.; Gomes, A. C. 1999. Comportamento de diferentes sistemas de manejo como fonte e depósito de carbono em relação à vegetação de cerrado. Revista Brasileira de Ciência do Solo, 23, 425-432.
[25]
Hulbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs, New York, v. 54, n.2, 187-211.
[26]
Blake, G. R., Hartge, K. H., 1986. Bulk density. In: KLUTE, A. (Ed.). Method soil analysis. 2.ed. Madison, ASA, Pt. 1, 364-367 (Agronomy, 9).
[27]
Bernoux, M., Cerri, C.C., Cerri, C. E. P., Siqueira Neto, M., Metay, A., Perrin, A.S., Scopel, E., Razafimbelo, T., Blavet, D., Piccolo, M.C., Pavei, M., Milne, E., 2006. Cropping systems, carbon sequestration and erosion in Brazil, a review. Agronomy for Sustaintable Development, 26, 1-8.
[28]
Ellert, B. H., Bettany, J. R., 1996. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 75, 529-538.
[29]
Moraes, J. F. L., Volkoff, B., Cerri, C. C., Bernoux, M., 1996. Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma, 70, 63-81.
[30]
Siqueira Neto, M., Scopel, E., Corbeels, M., Cardoso, A. N., Douzet, J. M., Feller, C., Piccolo, M. C., Cerri, C. C., Bernoux, M., 2010. Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil and Tillage Research, 110, 187-195.
[31]
Reichardt, K., 1985. Processos de transferências no sistema solo-planta-atmosfera. 4. ed. Campinas: Fundação Cargill, 466 p.
[32]
Franzluebbers, A. J., Stuedemann, J. A., 2010. Surface soil changes during twelve years of pasture management in the southern Piedmont USA. Soil Science Society of American Journal, 74, 2131–2141.
[33]
Costa, F. S., Bayer, C., Zanatta, J. A., Mielniczuk, J., 2008. Estoque de carbono orgânico no solo e emissões de dióxido de carbono influenciadas por sistemas de manejo no sul do Brasil. Revista Brasileira de Ciência do Solo, 32, 323-332.
[34]
Mendes, F. G., Melloni, E. G. P., Melloni, R., 2006. Aplicação de atributos físicos do solo no estudo da qualidade de áreas impactadas, em Itajubá/MG. Revista Cerne,12, 211-220.
[35]
Colet, M. J., Garbuio, P. W., Delalibera, H. C., Sverzut, C. B., Andrade, J. B., 2008. Produção de silagem da planta inteira de milho conforme manejo do solo na implantação da integração agricultura-pecuária. BioEng, 2, 31-36.
[36]
Sisti, C. J., Santos, H. P., Kohhann, R., Alves, B. J. R., Urquiaga, S., Boddey, R. M., 2004. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tillage Research, 76, 39-58.
[37]
Whiethölter, S., 2000. Nitrogênio no solo sob plantio direto. Revista Plantio Direto, Jul/Ago, 38-42.
[38]
Kichel, A. N., Almeida, R. G., Costa, J. A. A., 2012. Integração lavoura-pecuária-floresta e a sustentabilidade na produção de soja. In: CONGRESSO BRASILEIRO DE SOJA, 6, 2012, Cuiabá, MT. Anais. Cuiabá, MT: Embrapa; Aprosoja, 2012. 3p. 1 CD-ROM.
[39]
Mendonça, M. M., Urquiaga, S., Reis, V. M., 2006. Variabilidade genotípica de milho para acumulação de nitrogênio e contribuição da fixação biológica de nitrogênio. Pesquisa Agropecuária Brasileira, 41, 1681-1685.
[40]
Sommer, R., Ryan, J., Masri, S., Singh, M., Diekmann, J., 2011. Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil and Tillage Research, 115-116, 39-46.
[41]
Roesch, L. F., Camargo, F., Selbach, P., Sá, E. S., Passagla, L., 2005. Identificação de cultivares de milho eficientes na absorção de nitrogênio e na associação com bactérias diazotróficas. Ciência Rural, 35, 924-927.
[42]
Zinn, Y. L., Lal, R., Resck, D. V. S., 2005. Changes in soil organic carbon stocks under agriculture in Brazil. Soil and Tillage Research, 84, 28-40.
[43]
Feller, C., Beare, M. H., 1997. Physical control of soil organic matter dynamics in the tropics. Geoderma, 79, 69-116.
[44]
Wiseman, C. L. S., Püttmann, W., 2006. Interactions between mineral phases in the preservation of soil organic matter. Geoderma 134, 109-118.
[45]
Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascanao, C. E., Sanz, J. I., Thomas, R. J., Vera, R. R., 1994. Carbon storage by introduced deep- rooted grasses in the South American savannas. Nature, 371, 236-238.
[46]
Marchão, R. L., Becquer, T., Brunet, D., Balbino, L.C., Vilela, L., Brossard, M. 2009. Carbon and nitrogen stocks in a Brazilian clayey Oxisol: 13-year effects of integrated crop–livestock management systems. Soil & Tillage Research, 103, 442-450
[47]
Conant, R. T., Paustian, K., Elliot, E. J., 2001. Grassland management and conversion into grassland: effect on soil carbon. Ecological Applications, 11, 343-355.
[48]
Carvalho, J. L. N., Raucci, G. S., Cerri, C. E. P., Bernoux, M., Feigl, B. J., Wruck, F. J., C. C. Cerri., 2010. Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil and Tillage Research, 110, 175–186.
[49]
D`Andrea, A. F., Silva, M. L. N., Curi, N., Guilherme, R. G., 2004. Estoque de carbono e nitrogênio e formas de nitrogênio mineral em um solo submetido a diferentes sistemas de manejo. Pesquisa Agropecuária Brasileira, 39, 179-186.
[50]
Maia, S. M. F., Ogle, S. M. , Cerri, C. C., Cerri, C. E. P., 2010. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil & Tillage Research, 106, 177-184.
[51]
Maia, S. M. F., Ogle, S. M., Cerri, C. E. P., Cerri, C. C., 2009. Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso States, Brazil. Geoderma, 149, 84–91.
[52]
Corazza, E. J.; Silva, J. E.; Resck, D. V. S.; Gomes, A. C. 1999. Comportamento de diferentes sistemas de manejo como fonte e depósito de carbono em relação à vegetação de cerrado. Revista Brasileira de Ciência do Solo, 23, 425-432.
[53]
Marchão, R. L., Becquer, T., Brunet, D., Balbino, L.C., Vilela, L., Brossard, M. 2009. Carbon and nitrogen stocks in a Brazilian clayey Oxisol: 13-year effects of integrated crop–livestock management systems. Soil & Tillage Research, 103, 442-450.
[54]
Siqueira Neto, M., Scopel, E., Corbeels, M., Cardoso, A. N., Douzet, J. M., Feller, C., Piccolo, M. C., Cerri, C. C., Bernoux, M., 2010. Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil and Tillage Research, 110, 187-195.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186