| Peer-Reviewed

Impact of Mycorrhizal Inoculation on the Development of Intsia bijuga Grown on Soil under Exotic Species Casuarina equisetifolia Plantation

Received: 29 December 2014    Accepted: 11 January 2015    Published: 28 January 2015
Views:       Downloads:
Abstract

Installation of exotic species often influences the functioning of the soil microbial population and the development of indigenous plants. The objective of this study was to determine the influence of ectomycorrhizal inoculation on soil microorganisms and the development of the native plant Intsia bijuga grown on soils collected under exotic plantation of Casuarina equisetifolia. Two isolates of Pisolithus, Pis02 and PisE, were used to inoculate Intsia bijuga seedlings. After six months growth in a greenhouse, different parameters of plant development were evaluated: total biomass, mycorrhizal rate and chemical properties of leaves. For the rhizosphere soil, chemical and microbiological analyses were performed and enzyme activities were evaluated. The results showed that the inoculation of both ectomycorrhizal isolates caused a significant increase in phosphorus content in plant leaves and assimilable phosphorus content in soil cultures. In addition, the aboveground biomass of Intsia bijuga, the nitrogen content of leaves, the total microbial activity and the carbon content of the soil cultures were significantly higher with Pis02 inoculation. However the intensity of the acid phosphatase and the numbers of solubilizing tricalcium phosphate microorganisms and actinomycetes were significantly reduced. This study highlighted the importance of mycorrhizae in the establishment of native plants in soils under exotic plantation.

Published in Journal of Plant Sciences (Volume 3, Issue 1)
DOI 10.11648/j.jps.20150301.13
Page(s) 14-21
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Ectomycorrhizal Symbiosis, Intsia Bijuga, Casuarina Equisetifolia, Soil Microbial, Enzymatic Activity

References
[1] C. A. Kull, J. Tassin, S. Moreau, H. R. Ramiarantsoa, C. Blanc-Pamard, S. M. Carriere, “The introduced flora of Madagascar,” Biol. Invasion, vol. 14, pp. 875-888, 2012.
[2] J. A. Parrotta, "Casuarina equisetifolia L.ex J.R & G. Forst,” SO-ITF-SM-56, pp. 1-11, 1993.
[3] K. Pinyopusarerk, M. Barrie,“Improvement and culture of Nitrogen Fixing Trees”, NFT News, vol.4 No.1, 2001.http://iufro.boku.ac.at/iufro/iufronet/d2/wu20802/nl20802.htm
[4] L -H. Zhang, Y-M. Lin, G -F. Ye, X -W. Liu, G -H. Lin, “Changes in the N and P concentrations, N: P ratios and tannin content in Casuarina equisetifolia branchlets during development and senescence,” J. For. Res., vol.13, pp.302–311, 2008.
[5] C. E. Mitchell, A. G. Power,“Release of invasive plants from viral and fungal pathogens,” Nature vol. 421, pp. 625–627, 2003.
[6] P. B. Bridgewater, D. J. Backshall,“Dynamics of some Western Australian ligneous formations with special reference to the invasion of exotic species,” Vegetatio vol. 46, pp. 141-148, 1981.
[7] P. M. Vitousek, L. R. Walker, L. D. Whiteaker, D. Mueller-Dombois, and P. A. Matson, “Biological invasion by Myrica fayaalters ecosystem development in Hawaii,” Science, vol. 238, pp.802-804, 1987.
[8] A. Dia, R. Duponnois, "La grande muraille verte : capitalisation des recherches et valorisation des savoirs locaux," IRD, Eds. 496p, 2012.
[9] T. Abé, T. Yasui, S. Mackino, “Vegetation status on Nishi-jima Island (Ogasawara) before eradication of alien herbivore mammals: rapid expansion of an invasive alien tree, Casuarina equisetifolia (Casuarinaceae),” J. For. Res. vol.16, pp. 484-491, 2011.
[10] D. Scharfy, S. Gusewell, M. O. Gessner, H. O. Venterink, “Invasion of Solidago gigantea in contrasting experimental plant communities: effects on soil microbes, nutrients and plant-soil feedbacks,” Journal of Ecology, vol.98, pp.1379–1388, 2010.
[11] J. Y. Meyer, J. Florence,“Tahiti’s native flora endangered by the invasion of Miconia calvescens DC. (Melastomataceae),” J. Biogeogr.vol.23, pp. 775–781, 1996.
[12] P. F. Hughes, J. S. Denslow,“Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii,” Ecol. Appl., 15, pp. 1615–1628, 2005.
[13] N. C. Tuttle, K. H. Beard, W. C. Pitt, “Invasive litter, not an invasive insectivore, determines invertebrate communities in Hawaiian forests,” Biol. Invasions, vol.11, pp.845–855, 2009.
[14] S. Cordell S, R. Ostertag, B. Rowe, L. Sweinhart, L. Vasquez-Radonic, J. Michaud, T. C. Cole, J. R. Schulten, “Evaluating barriers to native seedling establishment in an invaded Hawaiian lowland wet forest,” Biol. Conserv., vol. 142, pp. 2997–3004, 2009.
[15] C. V. Hawkes, I. F. Wren, D. J. Herman & M. K. Firestone, “Plant invasion alters nitrogen cycling by modifying the soil nitrifying community,” Ecology Letters, vol.8, pp.976–985, 2005.
[16] B. E. Wolfe & J. N. Klironomos, Breaking new ground: soil communities and exotic plant invasion. BioScience, vol.55, pp.477–487, 2005.
[17] M. B. Eppinga, M. Rietkerk, S, C. Dekker, P. C. De Ruiter, W. H. Van Der Putten, “Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions,” Oikos, vol. 114, pp. 168–17, 2006.
[18] W. F. Sayed, H. M. El-Sharouny, H. H. Zahran, W. M. Ali, “Composition of Casuarina leaf litter and its influence on Frankia-Casuarina symbiosis in soil,” Folia Microbiol, vol.47, N.4, pp.429-434. 2002,
[19] X. Liu, Y. Lu, Y. Xue, X. Zhang, “Testing the importance of native plants in facilitation the restoration of coastal plant communities dominated by exotics,” Forest Ecology and Management, vol. 322, pp.19–26, 2014.
[20] P. Kardol, T. M. Bezemer, W. H. Van Der Putten, “Temporal variation in plant-soil feedback controls succession,” Ecology Letters, vol. 9, pp.1080–1088, 2006.
[21] V. T. Eviner, C. V. Hawkes,“Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems,” Restoration Ecology, vol. 16, pp.713–729, 2008.
[22] P. J. Davis, "Mycorhizae Influence Tropical Succession," Biotropica, Vol. 12, No2, supplement: Tropical Succession, pp. 56- 64, 1980.
[23] M.A. Selosse, F. Richard, X. He, S. W. Simard, “Mycorrizal networks: des liaisons dangereuses?" Trends Ecol. Evol. 21: 621-628, 2006.
[24] K. Valtanen, V. Eissfeller, F. Beyer, D. Hertel, S. Scheu, A. Polle, Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza, 2014.
[25] U. Blum, K. L. Staman, L. J. Flint, S. R. Shafer, “Induction and/or selection of phenolic acid-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity,” J. Chem. Ecol, vol. 26, pp. 2059-2078, 2000.
[26] G. J. Bethlenfalvay, H. Schüepp, “Arbuscular mycorrhizas and agrosystem stability, in Impact of arbuscular mycorrhizas on Sustainable Agriculture and Natural Ecosystems, Gianinazzi S. Schüepp H, Eds. Birkhauser Verlag; Basel, Switzerland, 1994, pp: 117-137.
[27] J. F. Johansson, L. R. Paul, R. D. Finlay,“Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture,” FEMS Microbiol. Ecol., vol 48, pp. 1-43, 2004.
[28] F. Gentili, A. Jumpponen, “Potential and possible uses of bacterial and fungal biofertilizes,” in Handbook of Microbial Biofertilizers, M. K. Rai, Eds. Food Products Press, pp. 1-28, 2006.
[29] M. M. Hart, J. Richard, Reader and J. N. Klironomos,” Plant coexistence mediated by arbuscular mycorrhizal fungi,” TRENDS in Ecology and Evolution, vol.18 No.8, 2003.
[30] J. M. Trappe,“Selection of fungi for ectomycorrizal inoculation in nurseries,” Ann. Rev. Phytopathol, vol.15, pp.203-222, 1977.
[31] S. M. Chambers and J. W. G. Cairney. Pisolithus, “In Ectomycorrhizal Fungi: key genera in profile”, J. W. G. Cairney & S.M.Chambers, Eds. Springer-Verlag, Berlin, 1999, pp. 1–31.
[32] J. H. Gardner and N. Malajczuk. Recolonization of rehabilitated bauxite mine sites in Western Australia by mycorrhizal fungi. For. Ecol. Manage, vol. 24, pp.27–42, 1988.
[33] D. H. Marx, “The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria, Phytopathol,” vol. 59, pp. 153-163, 1969.
[34] R. R. Thaiman, L. A. J. Thomson, R. DeMeo, F. Areki, and C. R. Elevitch,“ Intsia bijuga (vesi). Species Profiles for Pacific Island Agroforestry,” www.traditionaltree.org. ver.3-I, 2006.
[35] M. K. John, “Colorimetric determination in soil and plant material with ascorbic acid,” Soil Science, vol. 68: pp. 171-177, 1970.
[36] J. Murphy, J. P. Riley, “A modified single solution method for the determination of phosphate in natural waters,” Anal. Chim. Acta, vol. 27, pp.31-35, 1962.
[37] J. Schnürer, T. Rosswall, “Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter,” Applied and Environmental Microbiology, vol.6, pp.1256–1261, 1982.
[38] M. A. Tabatabai, “Assay of enzymes in soil,” in Methods of Soil Analysis, Vol. 2 (ed. A.L. Page), Am.Soci Agron and Soil Sci., Madison, WI, pp.922–947, 1982.
[39] S. A. Waksman, “The Actinomycetes, Classification, Identification and Description of Genera and Species,” Baltimore: The Williams and Wilkins Company, vol. 2 pp. 61-292, 1961.
[40] R. I. Pivovskaya,“Mobilization of phosphates in soil in connection with the vital activities of some microbial species,” Mikrobiologia, vol.17, pp. 362-370, 1948.
[41] G. Aubert, Méthodes d’Analyse des sols, CRDP Ed., Marseille, 1978, p. 360.
[42] J. Garbaye, J. C. Delwaulle, D. Diangana, “Growth response of eucalypts in the Congo to ectomycorrhizal inoculation,” Forest. Ecol. Manag., vol. 24, pp.151-157, 1988.
[43] O. Osonubi, K. Mulongoy, O. O. Awotoye, and D. U. V. Okali, “Effects of ectomyorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings,” Plant Soil, vol. 136, pp. 131-143, 1991.
[44] P. Reddell, Y. Prin, C. Theodorou, “Growth responses in Acacia mangium to inoculation with ectomycon'hizal fungi,” in International Symposium, D. Jasper and B. Thomson, Eds., 1992.
[45] B. D. Thomson, T. S. Grove, N. Malajczuk and G. E. STJ. Hardy, The effectiveness of ectomycorrhizal fungi in increasing the growth of Eucalyptusglobulus Labill.in relation to root colonization and hyphal development in soil. New Phytol.126, 517-524, 1994.
[46] Y. L. Chen, L. H. Kang, N. Malajczuck, B. Dell, “Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii, and P. radiate,” Mycorrhizavol. 16, pp. 251–259, 2006.
[47] C. B. Bati, E. Santilli, L. Lombrado, “Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels,” Mycorrhiza, 2014.
[48] A. R. Franco, P. M. L. Castro,“Inoculation of Pinus pinea seedlings with Pisolithus tinctorius and Suillus bellinii promotes plant growth in benfluralin contaminated soil,” Plant Soil, 2014.
[49] D. Mousain, N. Poitou, J. Delmas, "La Symbiose mycorhizienne: résultats obtenus avec l’Hebeloma cylindrosporumet le Pisolithus tinctorius, et perspectives d’application agronomique," inMushroom Science X (Part I), Proceedings of the 10th International Congress on the Science and Cultivation of Edible Fungi (France, juin 1978) / J. Delmas Ed. Bourges : Tardy Quercy SA, pp 949-956, 1979.
[50] A. B. Hatch,“The physical basis of mycotrophy in the genus Pinus,”Black Rock For. Bull, vol. 6, pp. 1-168, 1937.
[51] D. Mousain, "Étude de la nutrition phosphatée de symbiotes ectomycorhiziens," Montpellier : Université des Sciences et Techniques du Languedoc (Thèse de Doctorat d’État en Sciences), 1989.
[52] N. S. Bolan, “A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants,” Plant Soilvol. 134, pp. 189–207, 1991.
[53] L. A. Borges De Souza, P. A. P. Bonnassis, G. N. S. Filho, V. Lopes De Oliveira, “New isolates of ectomycorrhizal fungi and the growth of eucalypt,” Pesq. Agropec.Bras.Brasília, vol. 43 n. 2, pp. 235-241, 2008.
[54] F. Martin, Lorillou, “Nitrogen acquisition and assimilation in ectomycorrhizal systems,” in: Trees-contributions to modern tree physiologyH. Rennenberg, W. Eschrich, H. Ziegler, Eds. SPB Academic Publ., La Haye, Pays-Bas, pp. 423-439, 1997.
[55] J. P. Schimel, J. Bennett, “Nitrogen mineralization: challenges of a changing paradigm,” Ecology, vol.85, pp.591–602, 2004.
[56] H. Lambers, J. A. Raven, G. R. Shaver, S. E. Smith, “Plant nutrient-acquisition strategies change with soil age,” Trends in Ecology and Evolution, vol. 23, pp.95-103, 2008.
[57] H. Lambers, C. Mougel C., Jaillard B., Hinsinger P. 2009. Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil 321:33 p
[58] A. E. Richardson, J -M. Barea, A.M. Mcneill, C. Prigent-Combaret, “Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms,” Plant and Soil, vol. 321, pp.305–339, 2009.
[59] J. Talbot, K. Treseder, Controls over mycorrhizal uptake of organic nitrogen,” Pedobiologia, vol.53, pp.169-179, 2010.
[60] P. G. Kennedy, H. Hortal, S. E. Bergemann, T. D. Bruns, “Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance,” Journ. of Ecol., vol.95, pp. 1338–1345, 2007.
[61] M. Braham, U. Kõljalg, P. Kohout, S. Mirshahvaladi, L. Tedersoo, “Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa,” Mycorrhiza, vol. 2, pp. 311–19, 2013.
[62] J. Colpaert, J. A. Van Asshe, A. K. Luitjens, “The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L.,” New Phytol., vol. 120, pp 127-135, 1992.
[63] J. P. Daniel, E. Engelmoer Jocelyn, Behm, E. Toby Kiers, “Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance,” Mol. Ecol., 2013.
[64] B. P. Mark, S. P. John, A. A. Craig, “Mobilization of nitrogen in fruiting plants of a cultivar of cowpea,” J. Exp. Bot., vol. 34, n.5, pp.563–578, 1983.
[65] P. G. Kennedy, S. Hortal, S. E. Bergemann, T. D. Bruns,“Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance,” Journ. of Ecol.95 , 1338–1345, 2007.
[66] M. L. Cline, C. P. P. Reid, “Seed source and mycorrhizal fungal effects on growth of containerized Pinus contorta and Pinus ponderosa seedlings,” Forest Science vol. 28, pp.237-250, 1982.
[67] P. A. Heinrich, J. W. Patrick, “Phosphorus acquisition in the soil-root system of Eucalyptus pilularis Smith seedlings. The effect of ectomycorrhizas on seedling phosphorus and dry weight acquisition,” Aust. Journ.of Bot., vol. 34, pp.445-54, 1986.
[68] J. H. Graham, R. G. Linderman, J. A. Menge, “Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of troyer citrange,” New Phytol. Vol.91, pp.183-189, 1982b.
[69] M. D. Jones, D. M. Durall, P. B. Tinker,“Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels,” New Phytol., vol. 115, pp.259-267, 1990.
[70] T. Guissou, A. M. Ba, C. Plenchette, S. Guinko, R. Duponnois, "Effets des mycorhizes à arbuscules sur la tolérance à un stress hydrique de quatre arbres fruitiers : Balanites aegyptiaca (L.) Del., Parkia biblobosa (Jacq.) Benth., Tamarindus indicaL. et Zizyphus mauritianaLam," Secheressen. 2, vol.12, 2001.
[71] H. Boukcim, S. Conventi, D. Mousain, ‘Ectomycorhization de Cedrus atlantica en conditions contrôlées : efficacité de deux formes d’inoculum mycélien,’’ Ann. For Sci., vol. 59, pp. 839-846, 2002.
[72] C. L. N. Rosendahl, S. L. Rosendahl, “The role of vesicular-arbuscular mycorrhizal fungi in controlling damping-off and growth reduction in cucumber caused by Pythium ultimum,”Symbiosis, vol.9, pp.363-366, 1990.
[73] M.C. Brundrett, “Mycorrhizas in natural ecosystems,” in Advances in ecological research vol. 21, A. Macfayden, M. Begon, A. H. Fitter, Eds. London, UK: Academic Press, 1991, pp. 171–313.
[74] D. G. Strullu, "Les mycorhizes des arbres et plantes cultivées,"Collection Tech. & Doc., Lavoisier, Paris, 1991.
[75] G. Andrade, R. G. Linderman, Bethlenfalvay, “Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae,” Plant and Soil,vol. 202, pp. 79–87, 1998.
[76] R. N. Ames, C. P. P. Reid, Reid and R. Inghame,“Rhizosphere bacterial population responses to root colonization by a vesicular-arbuscular mycorrhizal fungus,” New Phytol, vol. 96, pp. 555- 563, 1984.
[77] P. Lemanceau, T. Corberand, L. Gardan, X. Latour, G. Laguerre, J-M. Boeufgras, C. Labouvette, “Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads.” Apl and Envir. Microbiol, pp.1004–1012, 1995.
[78] G. Andrade, K. L. Mihara, R. G. Linderman, G. J. Bethlenfalvay, “Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi,” Plant and Soil, vol. 192, pp. 71–79. 1997.
[79] J. C. Tarafdar, A. Jungk,“Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus,” Bio. Fert.Soils.vol.3, pp.199-204, 1987.
[80] T. S. George, B. L. Turner, J. P. Gregory, B. J. Cade-Menun, A. E. Richardson, “Depletion of organic phosphorus from oxisols in relation to phosphate activities in the rhizosphere,” Eur. J. Soil Sci., vol.57, pp. 47-57, 2006.
[81] Y. Tasaki, A. Azwan, Y. Yasaki, T. Hara, T. Joh, “Structure and expression of two genes encoding secreted acid phosphatases under phosphate-deficient conditions in Pholiota nameko strain N2,” Curr.Genet., vol.49, pp.323-332, 2006.
[82] C. Bertin, X. Yang, L.A. Weston, “The role of root exudates and allelochemicals in the rhizosphere,” Plant and Soil, vol.256, pp. 67–83, 2003.
[83] P. Marchner, S. Timonen, “Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere,” Applied Soil Ecology, vol. 28, pp. 23–36, 2005.
[84] P. Marschner, C-H. Yang, R. Lieberei, D. E. Crowley,“Soil and plant specific effects on bacterial community composition in the rhizosphere,” Soil Biol. Biochem, vol. 33, pp. 1437–1445, 2001b.
[85] H. Marschner, “Mineral nutrition of higher plants, 2nd edition,” Academic press, London, 1995.
[86] D. Riley, S. A. Barber, “Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface,” Soil Sci. Soc. Am. Proc., vol.35, pp.301–306, 1971.
[87] K. A. Vogt, C. C. Grier, C. E. Meier, R. L. Edmonds, “Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington,” Ecology, vol.63, pp.370-380, 1982.
[88] K. A.Vogt, D. A. Publicover, D. J. Vogt, “A critique of the role of ectomycorrhizas in forest ecology,” Agri.Ecosys.and Envir, vol.35, pp.171-190, 1991.
[89] R. Fogel, G. Hunt, “Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem,” Can. Journ.of For. Res. vol. 13, pp. 219-232, 1983.
[90] E. G. O'Neill, Responses of soil biota to elevated atmospheric carbon dioxide. Plant and Soil, vol. 65, pp.55-65, 1994.
[91] M. F. Allen, S. J. Morris, F. Edwards, E. B. Allen, “Microbe-plant interactions in Mediterranean-type habitats: shifts in fungal symbiotic and saprophytic functioning in response to global change,” in Global change and Mediterranean-type ecosystems, J. M. Moreno, W. C. Oechel, Eds. New York, USA: Springer Verlag, 1995, pp. 287-305.
[92] M. C. Rillig, M. F. Allen, “What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevatedatmospheric CO2?” Mycorrhiza, vol.9, pp.1-8, 1999.
[93] J. M. Talbot, S. D.Allison, K. K. Treseder, “Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change,” Functional Ecology, vol. 22, pp.955-963, 2008.
[94] D. J. Read, J. Perez-Moreno, “Mycorrhizas and nutrient cycling in ecosystems a journey toward relevance?” New Phytol., vol.157, pp. 475-492, 2003.
[95] J.Talbot, K. Treseder,”Controls over mycorrhizal uptake of organic nitrogen,” Pedobiologia, vol.53, pp. 169-179, 2010.
Cite This Article
  • APA Style

    Dina Ratahiriarisoa, Nirina Christophe Rakotoarimanga, Rondro Harinisainana Baohanta, Herizo Randriambanona, Marie-Ève. Beaulieu, et al. (2015). Impact of Mycorrhizal Inoculation on the Development of Intsia bijuga Grown on Soil under Exotic Species Casuarina equisetifolia Plantation. Journal of Plant Sciences, 3(1), 14-21. https://doi.org/10.11648/j.jps.20150301.13

    Copy | Download

    ACS Style

    Dina Ratahiriarisoa; Nirina Christophe Rakotoarimanga; Rondro Harinisainana Baohanta; Herizo Randriambanona; Marie-Ève. Beaulieu, et al. Impact of Mycorrhizal Inoculation on the Development of Intsia bijuga Grown on Soil under Exotic Species Casuarina equisetifolia Plantation. J. Plant Sci. 2015, 3(1), 14-21. doi: 10.11648/j.jps.20150301.13

    Copy | Download

    AMA Style

    Dina Ratahiriarisoa, Nirina Christophe Rakotoarimanga, Rondro Harinisainana Baohanta, Herizo Randriambanona, Marie-Ève. Beaulieu, et al. Impact of Mycorrhizal Inoculation on the Development of Intsia bijuga Grown on Soil under Exotic Species Casuarina equisetifolia Plantation. J Plant Sci. 2015;3(1):14-21. doi: 10.11648/j.jps.20150301.13

    Copy | Download

  • @article{10.11648/j.jps.20150301.13,
      author = {Dina Ratahiriarisoa and Nirina Christophe Rakotoarimanga and Rondro Harinisainana Baohanta and Herizo Randriambanona and Marie-Ève. Beaulieu and Damase Phambu Khasa and Marson Raherimandimby},
      title = {Impact of Mycorrhizal Inoculation on the Development of Intsia bijuga Grown on Soil under Exotic Species Casuarina equisetifolia Plantation},
      journal = {Journal of Plant Sciences},
      volume = {3},
      number = {1},
      pages = {14-21},
      doi = {10.11648/j.jps.20150301.13},
      url = {https://doi.org/10.11648/j.jps.20150301.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jps.20150301.13},
      abstract = {Installation of exotic species often influences the functioning of the soil microbial population and the development of indigenous plants. The objective of this study was to determine the influence of ectomycorrhizal inoculation on soil microorganisms and the development of the native plant Intsia bijuga grown on soils collected under exotic plantation of Casuarina equisetifolia. Two isolates of Pisolithus, Pis02 and PisE, were used to inoculate Intsia bijuga seedlings. After six months growth in a greenhouse, different parameters of plant development were evaluated: total biomass, mycorrhizal rate and chemical properties of leaves. For the rhizosphere soil, chemical and microbiological analyses were performed and enzyme activities were evaluated. The results showed that the inoculation of both ectomycorrhizal isolates caused a significant increase in phosphorus content in plant leaves and assimilable phosphorus content in soil cultures. In addition, the aboveground biomass of Intsia bijuga, the nitrogen content of leaves, the total microbial activity and the carbon content of the soil cultures were significantly higher with Pis02 inoculation. However the intensity of the acid phosphatase and the numbers of solubilizing tricalcium phosphate microorganisms and actinomycetes were significantly reduced. This study highlighted the importance of mycorrhizae in the establishment of native plants in soils under exotic plantation.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Impact of Mycorrhizal Inoculation on the Development of Intsia bijuga Grown on Soil under Exotic Species Casuarina equisetifolia Plantation
    AU  - Dina Ratahiriarisoa
    AU  - Nirina Christophe Rakotoarimanga
    AU  - Rondro Harinisainana Baohanta
    AU  - Herizo Randriambanona
    AU  - Marie-Ève. Beaulieu
    AU  - Damase Phambu Khasa
    AU  - Marson Raherimandimby
    Y1  - 2015/01/28
    PY  - 2015
    N1  - https://doi.org/10.11648/j.jps.20150301.13
    DO  - 10.11648/j.jps.20150301.13
    T2  - Journal of Plant Sciences
    JF  - Journal of Plant Sciences
    JO  - Journal of Plant Sciences
    SP  - 14
    EP  - 21
    PB  - Science Publishing Group
    SN  - 2331-0731
    UR  - https://doi.org/10.11648/j.jps.20150301.13
    AB  - Installation of exotic species often influences the functioning of the soil microbial population and the development of indigenous plants. The objective of this study was to determine the influence of ectomycorrhizal inoculation on soil microorganisms and the development of the native plant Intsia bijuga grown on soils collected under exotic plantation of Casuarina equisetifolia. Two isolates of Pisolithus, Pis02 and PisE, were used to inoculate Intsia bijuga seedlings. After six months growth in a greenhouse, different parameters of plant development were evaluated: total biomass, mycorrhizal rate and chemical properties of leaves. For the rhizosphere soil, chemical and microbiological analyses were performed and enzyme activities were evaluated. The results showed that the inoculation of both ectomycorrhizal isolates caused a significant increase in phosphorus content in plant leaves and assimilable phosphorus content in soil cultures. In addition, the aboveground biomass of Intsia bijuga, the nitrogen content of leaves, the total microbial activity and the carbon content of the soil cultures were significantly higher with Pis02 inoculation. However the intensity of the acid phosphatase and the numbers of solubilizing tricalcium phosphate microorganisms and actinomycetes were significantly reduced. This study highlighted the importance of mycorrhizae in the establishment of native plants in soils under exotic plantation.
    VL  - 3
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Biotechnology – Microbiology, Faculty of Sciences, University of Antananarivo, Madagascar (LabMic), PO Box. 906, Antananarivo 101, Madagascar; Laboratory of Environment Microbiology (LME), National Centre of Environnement Recherches (CNRE) Antananarivo, Madagascar, PO Box. 1739, Antananarivo 101, Madagascar; Centre d’étude de la forêt (CEF) et Institut de biologie intégrative et de systèmes (IBIS), Université Laval, G1V 0A6, Québec, Québec, Canada

  • Laboratory of Environment Microbiology (LME), National Centre of Environnement Recherches (CNRE) Antananarivo, Madagascar, PO Box. 1739, Antananarivo 101, Madagascar

  • Laboratory of Environment Microbiology (LME), National Centre of Environnement Recherches (CNRE) Antananarivo, Madagascar, PO Box. 1739, Antananarivo 101, Madagascar

  • Laboratory of Environment Microbiology (LME), National Centre of Environnement Recherches (CNRE) Antananarivo, Madagascar, PO Box. 1739, Antananarivo 101, Madagascar

  • Centre d’étude de la forêt (CEF) et Institut de biologie intégrative et de systèmes (IBIS), Université Laval, G1V 0A6, Québec, Québec, Canada

  • Laboratory of Biotechnology – Microbiology, Faculty of Sciences, University of Antananarivo, Madagascar (LabMic), PO Box. 906, Antananarivo 101, Madagascar

  • Sections