Physicochemical Characterization of Biofield Treated Orchid Maintenance/Replate Medium
Journal of Plant Sciences
Volume 3, Issue 6, December 2015, Pages: 285-293
Received: Oct. 8, 2015; Accepted: Oct. 19, 2015; Published: Nov. 16, 2015
Views 5683      Downloads 85
Authors
Mahendra Kumar Trivedi, Trivedi Global Inc., Henderson, NV, USA
Alice Branton, Trivedi Global Inc., Henderson, NV, USA
Dahryn Trivedi, Trivedi Global Inc., Henderson, NV, USA
Gopal Nayak, Trivedi Global Inc., Henderson, NV, USA
Ragini Singh, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
Article Tools
Follow on us
Abstract
Orchids are used worldwide for indoor decoration, vanilla production, and beverage preparation. They are also reported for their therapeutic efficacy in brain-related problems. The in vitro micropropagation technique was used for their propagation using the orchid maintenance/replate (OMR) medium. The current study was based on analysing the effect of biofield energy treatment on the physicochemical properties of OMR medium. A part of the sample was treated with Mr. Trivedi’s biofield energy; various physicochemical properties were analyzed and compared with the untreated (control) part. The X-ray diffraction analysis revealed the decrease in crystallite size of treated sample (132.80 nm) as compared to the control (147.55 nm). The particle size analysis revealed 20.78% increase in average particle size and 39.29% increase in d99 (size below which 99% particles are present) of the treated OMR medium as compared to the control. Moreover, the surface area of the treated sample was reduced by 3.9%, supporting the data of particle size analysis. The thermal analysis studies revealed an increase in the thermal stability of the treated OMR medium as compared to the control. The analysis was done by using differential scanning calorimetry that showed increase in melting point (1.23%) and latent heat of fusion (135.7%); and thermogravimetric analysis that reported increase in onset temperature and maximum thermal degradation temperature of the treated sample as compared to the control. Besides, the CHNSO analysis revealed the increase in percentage of nitrogen (22.22%) as well as the presence of sulphur in the treated sample. The Fourier transform infrared and UV-visible spectroscopy also showed the differences in the spectra of the treated sample as compared to the control OMR medium. Hence, the overall data revealed the impact of biofield energy treatment on the physicochemical properties of the treated sample that might be used in better way in the in vitro culture techniques as compared to the control sample.
Keywords
Orchid Maintenance/Replate Medium, Biofield Energy Treatment, In vitro Micropropagation, Complementary and Alternative Medicines
To cite this article
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana, Physicochemical Characterization of Biofield Treated Orchid Maintenance/Replate Medium, Journal of Plant Sciences. Vol. 3, No. 6, 2015, pp. 285-293. doi: 10.11648/j.jps.20150306.11
Copyright
Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Atwood JT (1986) The size of the orchidaceae and systematic position of epiphytic orchids. Selbyana 9: 171-186.
[2]
Jalal JS, Kumar P, Tewari L, Pangtey YPS. Orchids: Uses in traditional medicine in India. National seminar on medicinal plants of Himalaya: Potential and prospect. Regional Research Institute of Himalayan Flora, Tarikhet, India.
[3]
Bulpitt CJ (2005) The uses and misuses of orchids in medicine. QJM 98: 625-631.
[4]
Bulpitt CJ, Li Y, Bulpitt PF, Wang J (2007) The use of orchids in chinese medicine. J R Soc Med 100: 558-563.
[5]
Sforza S (2013) Food authentication using bioorganic molecules. DEStech Publications, Inc. USA.
[6]
Khatun H, Khatun MM, Biswas MS, Kabir MR, Al-Amin M (2010) In-vitro growth and development of Dendrobium hybrid orchid. Bangladesh J Agr Res 35: 507-514.
[7]
Nasiruddin KM, Begum R, Yasmin S (2003) Protocorm like bodies and plantlet regeneration from Dendrobium formosum leaf callus. Asian J Plant Sci 2: 955-957.
[8]
Parvin MS, Haque ME, Akhter F, Moniruzzaman, Khaldun ABM (2009) Effect of different levels of naa on in vitro growth and development of shoots of Dendrobium orchid. Bangladesh J Agr Res 34: 411-416.
[9]
Leva A, Rinaldi LMR (2012) Recent advances in plant in vitro culture. In Tech.
[10]
Saad AIM, Elshahed AM. Plant tissue culture media. InTech
[11]
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.
[12]
Mazumder PB, Sharma GD, Choudhury MD, Nath D, Talukdar AD, et al. (2010) In vitro propagation and phytochemical screening of Papilionanthe teres (Roxb.) Schltr. Assam university journal of science & technology: Biological and environmental sciences 5: 37-42.
[13]
http://www.funakoshi.co.jp/data/datasheet/PHT/O799.pdf
[14]
Garland SN, Valentine D, Desai K, Li S, Langer C, et al. (2013) Complementary and alternative medicine use and benefit finding among cancer patients. J Altern Complement Med 19: 876-881.
[15]
NIH, National Center for Complementary and Alternative Medicine. CAM Basics. Publication 347. [October 2, 2008]. Available at: http://nccam.nih.gov/health/whatiscam/
[16]
Saad M, Medeiros RD (2012) Distant healing by the supposed vital energy- scientific bases. Complementary therapies for the contemporary healthcare. InTech.
[17]
Rubik B (2002) The biofield hypothesis: Its biophysical basis and role in medicine. J Altern Complement Med 8: 703-717.
[18]
Prakash S, Chowdhury AR, Gupta A (2015) Monitoring the human health by measuring the biofield "aura": An overview. IJAER 10: 27654-27658.
[19]
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) Antimicrobial sensitivity pattern of Pseudomonas fluorescens after biofield treatment. J Infect Dis Ther 3: 222.
[20]
Trivedi MK, Patil S, Shettigar H, Singh R, Jana S, et al. (2015) An impact of biofield treatment on spectroscopic characterization of pharmaceutical compounds. Mod Chem appl 3:159.
[21]
Sances F, Flora E, Patil S, Spence A, Shinde V (2013) Impact of biofield treatment on ginseng and organic blueberry yield. Agrivita J Agric Sci 35: 22-29.
[22]
Patil SA, Nayak GB, Barve SS, Tembe RP, Khan RR (2012) Impact of biofield treatment on growth and anatomical characteristics of Pogostemon cablin (Benth.). Biotechnology 11: 154-162.
[23]
Zhang K, Alexandrov IV, Kilmametov AR, Valiev RZ, Lu K (1997) The crystallite-size dependence of structural parameters in pure ultrafine-grained copper. J Phys D Appl Phys 30: 3008-3015.
[24]
Trivedi MK, Tallapragada RR (2008) A transcendental to changing metal powder characteristics. Met Powder Rep 63: 22-28.
[25]
Qu Y, Yang H, Yang N, Fan Y, Zhu H, et al. (2006) The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater Lett 60: 3548-3552.
[26]
Sun Q, Wu M, Bu X, Xiong L (2015) Effect of the amount and particle size of wheat fiber on the physicochemical properties and gel morphology of starches. PLoS One 10: e0128665.
[27]
Amer AM (2009) Moisture adsorption capacity and surface area as deduced from vapour pressure isotherms in relation to hygroscopic water of soils. Biologia 64: 516-521.
[28]
Levitas VI, Pantoya ML, Chauhan G, Rivero I (2009) Effect of the alumina shell on the melting temperature depression for aluminum nanoparticles. J Phys Chem C Nanomater Interfaces 113: 14088-14096.
[29]
Martinez E (1961) The effect of particle size on the thermal properties of serpentine minerals. Am Mineral 46: 901-912.
[30]
Lambert JB (1987) Introduction to organic spectroscopy. Macmillan, New York, USA.
[31]
Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions: Their use in qualitative analysis. Analytical Chemistry 24: 1253-1294.
[32]
Breda S, Reva ID, Lapinski L, Nowak MJ, Fausto R (2006) Infrared spectra of pyrazine, pyrimidine and pyridazine in solid argon. J Mol Struct 786: 193-206.
[33]
Rao CNR, Venkataraghavan R (1964) Contribution to the infrared spectra of five-membered N- and N, S-heterocyclic compounds. Can J Chem 42: 43-49.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186