Synergistic Effect of Low Doses of X-rays and Biobras-16 on Yield and Its Components in Tomato (Solanum lycopersicum L.) Plants
American Journal of Bioscience and Bioengineering
Volume 3, Issue 6, December 2015, Pages: 197-202
Received: Dec. 24, 2015; Published: Dec. 30, 2015
Views 4071      Downloads 141
Yanelis Camejo Serrano, Direction of environmental research , Agricultural Research Institute “Jorge Dimitrov”, Bayamo, Granma, Cuba
Ramiro Ramírez Fernández, Direction of environmental research , Agricultural Research Institute “Jorge Dimitrov”, Bayamo, Granma, Cuba
Franklin Rivera Pineda, Division of Sustainable Development, Intercultural University of Mexico State, San Felipe, Mexico State, Mexico
Lilita T. Sueiro Pelegrin, Direction of environmental research , Agricultural Research Institute “Jorge Dimitrov”, Bayamo, Granma, Cuba
Dagoberto García Fernández, Direction of environmental research , Agricultural Research Institute “Jorge Dimitrov”, Bayamo, Granma, Cuba
María Caridad González Cepero, Department of Genetic, National Institute of Agricultural Sciences, San José de las Lajas, Mayabeque, Cuba
Article Tools
Follow on us
In Cuba the low tomato crop yield lead to the search for new alternatives to sustainably increase yields. Therefore, the aim of this study was to evaluate the synergistic effect of low doses of X-rays and Biobras-16 on the increased yield and its components in tomato plants as well as select the optimal combination for use in agriculture. Fresh seeds of the variety of tomato var. Vyta, were exposed to single and combined treatment with X-ray dose of 5, 10, 15, 20 and 25 Gy and Biobras-16 in concentrations of 0.5; 1.0; 1.5 and 2.0 mg.L-1. The experiments were conducted during the months of October to January 2007-2010. The results showed that the combination of 20 and 25 Gy dose of X-rays and 1.5 and 2.0 mg.L-1 Biobras-16 caused a stimulating effect on yield and its components in tomato plants. Also, in this investigation was determined that the optimal treatment to achieve a synergistic effect on yield per plant was 30 Gy + 2.0 mg.L-1, which induced increases in yield and its components. Our results suggested that low doses of x-rays and Biobras- 16 have the potential to improve crop productivity of tomato plants through the improvement of plant yield and yield components.
Radiation, Radiostimulation, Brasinoesteroids
To cite this article
Yanelis Camejo Serrano, Ramiro Ramírez Fernández, Franklin Rivera Pineda, Lilita T. Sueiro Pelegrin, Dagoberto García Fernández, María Caridad González Cepero, Synergistic Effect of Low Doses of X-rays and Biobras-16 on Yield and Its Components in Tomato (Solanum lycopersicum L.) Plants, American Journal of Bioscience and Bioengineering. Vol. 3, No. 6, 2015, pp. 197-202. doi: 10.11648/
T.D. Luckey, “Hormesis with ionizing radiation”, Boca Raton Florida: CRC Press, 1980.
C. Arena, V. De Micco, E. Macaeva and R. Quintens, “Space radiation effects on plant and mammalian cells”, Acta Astronautica, 2014, vol. 1, pp. 419-431.
V. Kumar, and D. Kumar, “Synergistic effect of the combined treatment with ray X and phytohormones in tomato”, Indian Journal of Agricultural Sciences, 1987, vol. 58, no.4, pp. 313-314.
J-X. Cui; Y.-H. Zhou, J.-G Ding, X.-J Xia, K.A.I. Shi, S.-C. Chen, T. Asami, Z. Chen and J.-Q Yu, “Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber”. Plant Cell Environ. 2011, vol. 34, pp. 347–358.
C. J. Yang, C. Zhang, Y. N. Lu, J. Q. Jiny and X.L. Wang, “ The mechanisms of Brassinosteroids’ action: from Signal Transduction to plant development”, Molecular Plant, 2011, vol. 4, no. 4, pp. 588-600.
M. Núñez, Y. Reyes, L. Rosabal and L. Martínez, “Reseña bibliográfica. Análogos espirostánicos de brasinoesteroides y sus potencialidades de uso en la agricultura”. Cultivos Tropicales, 2014, vol. 35, no. 2, pp. 34-42.
A. Hernández, M. Osvaldo, M. Morales and A. Cabrera, “Correlación de la nueva versión de clasificación genética de los suelos de Cuba con las clasificaciones internacionales y nacionales: Una herramienta útil para la investigación, docencia y producción agropecuaria”. Instituto Nacional de Ciencias Agrícolas, 2005.
A. Rodríguez, N. Companioni, E. Peña, F. Cañet, J. Fresneda, J. Estrada, and R. Rey, “Manual Técnico para Organopónicos, Huertos Intensivos y Organoponía Semiprotegida”, 2007.
J. Yandell, “Practical Data Analysis for Designed Experiments”, London, Chapman and Hall Press. 1997.
M. Melki y D. Sallami, “Studies the Effects of Low Dose of Gamma Rays on the Behaviour of Chickpea under Various Conditions”. Pakistan Journal of Biological Sciences. 2008, vol.11, pp.2326-2330.
A. Bovi, J. Valter, T. Neto, “Use of low doses of 60 Co gamma radiation on carrot seeds and their effects on plant growth and yield”. IX International Symposium on Timing of Field Production in Vegetable Crops. ISHS Acta Horticulture. 2004, pp. 607.
L. G. Iglesias, L. R. Sánchez, Y. Tivo, M. Luna, N. Flores, J. C. Noa, C. Ruiz, J. L. Moreno, “Efecto de radiaciones gamma en Abies religiosa (Kunth) Schltd”. et Cham Revista Chapingo. Serie Ciencias Forestales y del Ambiente. 2010, vol. 16, no. 1, pp. 5-12.
A. Álvarez, R. Ramírez, L. Chávez, Y. Camejo, L. Licea, E. Porras, and B. García, “Efecto del tratamiento de semillas con láser de baja potencia, sobre el crecimiento y rendimiento en plantas de tomate (Solanum lycopersicum, L.)”. ITEA. 2011, vol. 107, no. 3, pp.1-10.
A. Álvarez, R. Ramírez, L. Chávez and Y. Camejo, “Efecto del tratamiento de semillas con radiación láser de baja potencia en un híbrido de tomate (Solanum lycopersicum, L.)”. Revista Granma Ciencia. 2011, vol. 15, no. 2.
V. De Micco, C. Arena, D. Pignalosa, and M. Durante, “Effects of sparsely and densely ionizing radiation on plants”, Radiat. Environ. Biophys. 2011, vol. 50, pp. 1-19.
J. Ruiz, E. Terry, T. Tejeda and M. M. Díaz, “Aplicación de bioproductos a la producción ecológica de tomate”. Cultivos Tropicales. 2009, vol. 30, no. 3, p. 60-64.
A. Alarcón, P. Barreiro M. Godefoy and T. Boicet “Efecto del Biobras-16 en algunos indicadores del crecimiento y rendimiento del tomate, variedad “Campbell-28”. Revista Granma Ciencia, 2011, vol. 15, no. 2.
A. Alarcón, P. Barreiro and S. Díaz, “Efecto del Biobras-16 y el Fitomas-E en algunos indicadores del crecimiento y el rendimiento del tomate (Solanum Lycopersicum, Lin) variedad “Vyta”. Revista Granma Ciencia. 2012, vol. 16, no. 1.
L. González, M. Núñez, C. Robaina, M. C Jiménez and J. Pérez, “Efecto del Biobras-16 en algunos indicadores agronómicos del tabaco, variedad Sancti Spíritus-96”. Centro Agrícola. 2005, vol. 32, no. 1.
B. Torres, A. Espinosa, M. Mendosa, J. L. Rodríguez, M.B. Irizar and J.S. Castellano, “Efecto de brasinoesteroides en híbridos de maíz androestériles y fértiles”. Agronomía Mesoamericana. 2007, vol. 18, no. 2, pp. 155-162.
TW. Kim, M. Michniewicz, DC. Bergmann and ZY. Wang, “Bassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway”. Nature. 2012, vol. 482, pp. 419-423.
X. Kong, J. Pan, G. Cai and D. Li, “Recent insights into brassinosteroid signaling in plants: its dual control of plant immunity and stomatal development”, Mol Plant, 2012, vol.5, pp. 1179-1181.
D. Holá, “Brassinosteroids and photosynthesis. In: Hayat S, Ahmad A, editors. Brassinosteroids: a class of plant hormone”, Dordrecht-Heidelberg-London New York: Springer Science+Business Media B.V. 2011, pp. 143–92.
H. Guo, L. Li, M. Aluru, S Aluru and Y. Yin, “Mechanisms and networks for brassinosteroid regulated gene expression”. Curr Opin Plant Biol. 2013, vol. 16, pp.545–53.
J.Y. Zhu, J. Sae-Seaw and Z.Y. Wang, “Brassinosteroid signaling”. Development, 2013, vol.140, pp.1615–20.
E. Oh, J.Y. Zhu and Z.Y Wang, “Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses”. Nature Cell Biol. 2012, vol.14, pp. 802–11.
D. Coll, “Novedades acerca del mecanismo de reconicimiento y trasducción de la señal brasinoesteroide”. Revista CENIC, Ciencias Biológicas. 2006, vol. 37, no.2.
K. Caesar, K. Elgass, Z. Chen, P. Huppenberger, J. Witthöft, F. Schleifenbaum, M. R. Blatt, C. Oecking and K. Harter, “A fast brassinolide-regulated response pathway in the plasma membrane of Arabidopsis thaliana”. Plant Journal. 2011, vol. 66, pp. 528-540.
L. Xie, C. Yang and X. Wang, “Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis”. Journal of Experimental Botany. 2011, vol. 62, pp. 4495-4506.
C. V Koka, R. E Cerny, R. G. Gardner, T. Noguchi, S. Fujioka, S. Takatsuto and S. Yoshida, “Clouse, S. D. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology. 2000, vol. 122.
A. Geraskin, G. Dikarev, B. Nesterov, and S. Dikareva, “Regularities of cytogenetic effects induced by low doses of ionizing radiation and other technogenous pollutants. In: Proceedings of regional contest of research proposals in natural sciences”. Kaluga. 2001, vol. 2, pp. 318-332.
M. Barbafieri, and E. Tassi, “Brassinosteroids for phytoremediation application”, Springer, Netherlands, Dordrecht Heidelberg London New York. 2011, pp. 403–437.
M. Esnault, F. Legue, and C. Chenal, “Ionizing radiation: advances in plant response”. Environ. Exp. Bot. 2010, vol.68, pp. 231-237.
S. P. Choudhary, Y.-Q Yu, K. Yamaguchi-Shinozaki, K. Shinozaki, and L-S. Tran, “Benefits of brassinosteroid cross talk”. Trends Plant Sci. 2012, vol. 17, pp. 594-605.
P. Box, and B. Wilson, “On the Experimental Attainment of Optimum Conditions (with discussion)”. Journal of the Royal Statistical Society Series. 1951, vol. 13, no.1, pp. 1–45.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186