| Peer-Reviewed

Stem Cells for Neuro-regeneration: State of the Art

Received: 9 June 2015    Accepted: 17 June 2015    Published: 9 July 2015
Views:       Downloads:
Abstract

Neuroregeneration (NR) is a long-sought medical dream which has intrigued vast research in the past decades. A traditional physiologic dogma that central nervous system does not regenerate has been strongly challenged in the recent years since the advent of the stem cell era. Stem cell research in the regenerative field passes through three main stages. The first stage is the in-vitro experiments which studies the exact molecular and cellular mechanisms underlying stem cell-mediated NR. The second stage is the application of these data in experimental animal settings to provide "proof of concept" of stem cell therapy in animal models. The final step is the translation of these data in pilot clinical trials. In this review, we will try to gather the different data of stem cell-mediated NR from various experimental and clinical researches.

Published in American Journal of Bioscience and Bioengineering (Volume 3, Issue 4-1)

This article belongs to the Special Issue Stem Cells for Neuro-Regeneration: Where Do We Stand

DOI 10.11648/j.bio.s.2015030401.19
Page(s) 56-70
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Neuroregeneration, Stem Cells, Mesenchymal Stem Cells, Parkinsonism, Transdiffereniation

References
[1] Herculano-Houzel S (2009): The Human Brain in Numbers: A linearly Scaled-up Primate Brain. Front Hum Neurosci, 3:31.PMCID: PMC2776484
[2] Neurological Disorders: public health challenges ISBN 92 4 156336 2.
[3] Mueller BK, Mueller R, Schoemaker H (2009): Stimulating neuroregeneration as a therapeutic drug approach for traumatic brain injury. Br J Pharmacol 157(5):675-685. PMCID: PMC2721253.
[4] Eixarch H, Gutierrez-Franco A, Montalban X, Espejo C (2013): Semaphorins 3A and 7a : Potential immune and neuroregenerative targets in multiple sclerosis. Trends Mol Med 19(3):157-64.
[5] Zhu R, Cho KS, Chen DF, Yang L (2014): Ephrins A2 and A3 are negative regulators of the regenerative potential of Moller cells. Chin Med J 127(19):3438-42.
[6] Lyuksyutova AI, Lu CCm Milanesio N, KIing LA, Guo N, Wang Y, Nathans J, Tessier-Layigne M , Zou Y (2003): Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302(5652):1984-8.
[7] Liu J, Wu X, Mitchell B, Kintner C, Ding S, Schultz PG (2005): A small-molecule agonist of the Wnt signaling pathway. Angew Chem Int Ed Engl 44(13):1987-90.
[8] Arvanian VL, Schnell L, Lou L, Golshani R, Hunanyan A, Ghosh A, Pearse DD, Robinson JK, M. Schwab ES, Fawcett JW, and Mendell LM (2009): Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fibers to motoneurons. Exp.Neurol. 216 (2):471-480.
[9] Zhao RR, Andrews MR, Wang D, Warren P, Gullo M, Schnell L, Schwab ME, Fawcett JW (2013) Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur J Neurosci 38:2946-2961.
[10] Hunanyan AH, Garcia-Alias G, Alessi V, Levine JM, Fawcett JW, Mendell LM, and Arvanian LV (2010): Role of chondroitin sulfate proteoglycans in axonal conduction in Mammalian spinal cord. J.Neurosci. 30 (23):7761-7769.
[11] Weissmiller AM and Wu C (2012): Current advances in using neurotrophic factors to treat neurodegenerative disorders. Translational Neurodegeneration 1:14.
[12] Tabakow P, Jarmundowjca W, CzapigaB, Fortuna W, Miedzybrodzki R, Czyz M, Huber J, Szarek D, Okurowski S, Szewczyk P, Gorski A, Raisman G (2013: Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant Apr 2 [Epub ahead of print].
[13] Barker RA, Barrett J, Bjorklund A (2013): Fetal dopaminergic transplantation trials ant the future of neural grafting in Parkinson's disease. Lancet Neurol 12(1):84-91.
[14] Huebner EA an Strittmatter SM (2009): Axon Regeneration in the Peripheral and Central Nervous Systems. Results Probl Cell Differ 48:339-351.
[15] Burnett MG an Zager EL (2004): Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 16(5): Article 1.
[16] Cafferty WB, Yang S-H, Duffy PJ, Li S, Strittmatter SM. (2007): Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. JNeurosci.27:2176–2185.
[17] Lallemend F1, Sterzenbach U, Hadjab-Lallemend S, Aquino JB, Castelo-Branco G, Sinha I, Villaescusa JC, Levanon D, Wang Y, Franck MC, Kharchenko O,Adameyko I, Linnarsson S, Groner Y, Turner E, Ernfors P (2012): Postional differences of axon growth rates between sensory neurons encoded by Runx3. EMBO J 31(18):3718-29.
[18] Coletti D, Teodori L, Zhenlin L, Beranudin JF and Adamo S (2013): Restoration versus reconstruction: cellular mechanisms of skin, nerve an muscle regeneration compared. Regenerative Medicine Research 1:4.
[19] Ferguson TA and Son Y (2011): Extrinsic and intrinsic determinants of nerve regeneration. J Tissue Eng 2(1):2041731411418392.
[20] Tohill M, Mantovani C, Wiberg M and Terenghi G (2004): Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neuroscience Letters 362(3):200-203.
[21] Huang WH1, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC (2013): Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 32(37):4343-54.
[22] Glavaski-Joksimovic A and Bohn MC (2013): Mesenchymal stem cells and neuroregeneration in Parkinson's disease. Exp Neurol 247:25-38.
[23] Baraniak PR and McDevitt T (2010): Stem cell paracrine actions and tissue regeneration. Regen Med 5(1):121-143.
[24] Kassis I1, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S, Abramsky O, Karussis D.(2008): Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol. 65(6):753-61.
[25] Tomaskovic-Crook E and Crook JM (2011): Human embryonic stem cell therapies for neurodegenerative diseases. CNS Neurol Disord Drug Targets 10(4):440-8.
[26] Roszek K and Czarneka J (2014): Perspectives of mesenchymal stem cell-based neuroregeneration. J Stem Cell Res, Rev & Rep; 1(3):1012.
[27] Anand A, Thakur K, Gupta PK. (2013): ALS and oxidative stress: the neurovascular scenario. Oxid Med Cell Longev 2013:635831.
[28] Xinyi Li, Eliezer Masliah, Natàlia Reixach, and Joel N. Buxbaum (2011): Neuronal Production of Transthyretin in Human and Murine Alzheimer’s Disease: is it Protective?J Neurosci. 31(35): 12483–12490.
[29] Caltagirone C, Ferrannini L, Marchionni N, Nappi G, Scapagnini G, Trabucchi M.(2012): The potential protective effect of tramiprosate (homotaurine) against Alzheimer’s disease: a review. Aging Clin Exp Res 24(6):580–7.
[30] Nimmrich V, Eckert A.(2013): Calcium channel blockers and dementia. Br J Pharmacol ;169(6):1203–10.
[31] Schaeffer EL, da Silva ER, Novaes B de A, Skaf HD, Gattaz WF. (2010): Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry;34(8):1381–9.
[32] Gentile MT, Reccia MG, Sorrentino PP, Vitale E, Sorrentino G, Puca AA, Colucci-D'Amato L. (2012); Role of cytosolic calcium-dependent phospholipase A2 in Alzheimer’s disease pathogenesis. Mol Neurobiol; 45(3):596–604.
[33] Singh MS, MacLaren RE. (2011): Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci ;278(1721):3009–16.
[34] Zhou Y, Sun M, Li H, Yan M and Xie T (2012): Differentiation of rhesus adipose stem cells into dopaminergic neurons. Neual Regen Res 7(34):2645-2652.
[35] Jacob A, Alexander JJ.(2014): Complement and blood-brain barrier integrity. Mol Immunol ;61(2):149–52.
[36] Towne C, Setola V, Schneider BL, Aebischer P.(2011): “Neuroprotection by Gene Therapy Targeting Mutant SOD1 in Individual Pools of Motor Neurons Does not Translate Into Therapeutic Benefit in fALS Mice. Mol. Ther.
[37] Park H, Cho J, Park C, Jung S, Park C, Lee S, Oh S, Park Y, and Chang M (2012): Directed Induction of Functional Motor Neuron-like Cells from Genetically Engineered Human Mesenchymal Stem Cells. PLoS One 7(4):e35244.
[38] Li Y, Balasubramanian U, Cohen D, Zhang P-W, Mosmiller E, Sattler R, et al.(2015): “A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells”. PloS one. Jan ;10(3):e0118266.
[39] Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K.(2007): “Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model” . Nat. Neurosci.; 10(5):608– 614.
[40] Wyatt TJ, Rossi SL, Siegenthaler MM, Frame J, Robles R, Nistor G, Keirstead HS. (2011): “Human motor neuron progenitor transplantation leads to endogenous neuronal sparing in 3 models of motor neuron loss”. Stem Cells Int.; 2011:207230.
[41] Suzuki M, McHugh J, Tork C, Shelley B, Hayes A, Bellantuono I, Aebischer P, Svendsen CN. (2008): “Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS” . Mol. Ther. 2008; 16(12):2002–2010.
[42] King A, Liu L (2013): Stem cell therapy for Alzheimer's disease: hype or hope?Bioscience Horizons 6 :hzt011
[43] Lee JC, Seong J, Kim SH, Lee SJ, Cho YJ, An J, et al(2012):. “Replacement of microglial cells using Clodronate liposome and bone marrow transplantation in the central nervous system of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis” .Biochemical and biophysical research communications. Feb10; 418(2) :359–65.
[44] Gamez J, Carmona F, Raguer N, Ferrer-Sancho J, Martin-Henao GA, Marti-Beltran S et al (2010): . “Cellular transplants in amyotrophic lateral sclerosis patients: an observational study”. Cytotherapy; 12(5):669–677.
[45] Allers C, Jones JA, Lasala GP, Minguell JJ.(2014): “Mesenchymal stem cell therapy for the treatment of amyotrophic lateral sclerosis: signals for hope?” Regenerative medicine ;9(5):637–47.
[46] Pastor D, Viso-Leon MC, Jones J, Jaramillo-Merchan J, Toledo-Aral JJ, Moraleda JM, et al(2011): “Comparative Effects between Bone Marrow and Mesenchymal Stem Cell Transplantation in GDNF Expression and Motor Function Recovery in a Motorneuron Degenerative Mouse Model” Stem Cell Rev. 8(2):445-58.
[47] Kaspar BK.(2008): “Mesenchymal stem cells as trojan horses for GDNF delivery in ALS”. Mol. Ther. ; 16(12):1905–1906.
[48] Kim C, Lee HC, Sung J-J (2014): . “Amyotrophic lateral sclerosis - cell based therapy and novel therapeutic development”. Experimental neurobiology; 23(3):207–14.
[49] Kim KS, Lee HJ, An J, Kim YB, Ra JC, Lim I, et al (2014): “Transplantation of human adipose tissue-derived stem cells delays clinical onset and prolongs life span in ALS mouse model”. Cell transplantation; 23(12):1585–97.
[50] Marconi S, Bonaconsa M, Scambi I, Squintani GM, Rui W, Turano E, et al.(2013): “Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model”. Neuroscience; 248:333–43.
[51] Lopez-Gonzalez R, Kunckles P, Velasco I. (2009): “Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells”. Cell Transplant ; 18:1171–1181.
[52] Xu L, Ryugo DK, Pongstaporn T et al. (2009): “Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry”. J Comp Neurol; 514: 297–309.
[53] Lunn JS, Sakowski SA, Feldman EL.(2014): “Concise review: Stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem cells”; 32(5):1099–109.
[54] Lepore AC, Rauck B, Dejea C et al. (2008): “Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease”. Nat Neurosci; 11:1294–1301.
[55] Li Y, Bao J, Khatibi NH et al.(2011): “Olfactory ensheathing cell transplantation into spinal cord prolongs the survival of mutant SOD1(G93A) ALS rats through neuroprotection and remyelination” Anat Rec (Hoboken); 294:847–857.
[56] Rowland LP, Shneider NA. (2001): “Amyotrophic lateral sclerosis”. N. Engl. J. Med.; 344(22):1688– 1700.
[57] Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT. “ Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis”. Ann. Neurol. 2003; 53(6):804–807.
[58] Kaspar BK, Frost LM, Christian L, Umapathi P, Gage FH. “Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis”. Ann. Neurol. 2005; 57(5):649–655.
[59] Liebetanz D, Hagemann K, von Lewinski F, Kahler E, Paulus W. “Extensive exercise is not harmful in amyotrophic lateral sclerosis”. Eur. J. Neurosci. 2004; 20(11):3115–3120.
[60] Chung C, Fujita N, Kawahara N, Yui S, Nam E and Nishimura R (2013): A Comparison of Neurosphere Differentiation Potential of Canine Bone Marrow-Derived Mesenchymal Stem Cells and Adipose-Derived Mesenchymal Stem Cells. Journal of Veterinary Medical Science ; 75(7). DOI: 10.1292/jvms.12-0470
[61] Suzuki M, Svendsen CN. “Combining growth factor and stem cell therapy for amyotrophic lateral sclerosis”. Trends in neurosciences. 2008 Apr ; 31(4):192–8.
[62] Schnabel, J., 2008. Neuroscience: standard model. Nature 454 (7205), 682–685.
[63] Scott, S., Kranz, J.E., Cole, J., Lincecum, J.M., Thompson, K., Kelly, N. et al. “ Design, power, and interpretation of studies in the standard murine model of ALS”. Amyotroph. Lateral Scler. 9 (1), 4–15.
[64] Thomsen GM, Gowing G, Svendsen S, Svendsen CN. “The past, present and future of stem cell clinical trials for ALS”. Experimental neurology. 2014 Dec; 262 Pt. B: 127–37.
[65] Tong LM, Fong H, Huang Y. “Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives" Experimental & molecular medicine 47:e151.
[66] Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH et al. “ Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model” . Stem Cells 2007; 25:1204–1212.
[67] Yamasaki TR, Blurton-Jones M, Morrissette DA, Kitazawa M, Oddo S, LaFerla FM. “ Neural stem cells improve memory in an inducible mouse model of neuronal loss”. JNeurosci2007; 27: 11925–11933.
[68] Xuan AG, Luo M, Ji WD, Long DH. “Effects of engrafted neural stem cells in Alzheimer’s disease rats”. Neurosci Lett 2009; 450:167–171.
[69] Xuan AG, Long DH, Gu HG, Yang DD, Hong LP, Leng SL. “ BDNF improves the effects of neural stem cells on the rat model of Alzheimer’s disease with unilateral lesion of fimbria-fornix”. Neurosci Lett 2008; 440: 331–335.
[70] Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF et al. “Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease”. Proc Natl Acad Sci USA 2009; 106: 13594–13599
[71] Hampton DW, Webber DJ, Bilican B, et al. “Cell-mediated neuroprotection in a mouse model of human tauopathy”. J Neurosci. 2010; 30:9973–9983.
[72] Zhang W, Wang P, Gu G, Li M, Gao X. “Effects of neural stem cells transplanted into an animal model of Alzheimer disease on Aβ plaques”. Zhonghua yi xue za zhi. 2013 Dec 3; 93(45):3636–9.
[73] Kim SU, Lee HJ, Kim YB. “Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology” 2013; 33:491–504
[74] Ma, T.; Gong, K.; Ao, Q.; Yan, Y.; Song, B.; Huang, H.; Zhang, X.; Gong, Y. “Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice”. Cell Transplant. 22(S1):113–126; 2013.
[75] Kim, H. S.; Suh, Y. H. “The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice”. PLoS One 7(9):e45757; 2012.
[76] Chang K-A, Kim HJ, Joo Y, Ha S, Suh Y-H. “The therapeutic effects of human adipose-derived stem cells in Alzheimer’s disease mouse models.” Neuro-degenerative diseases. 2014 Jan;13 (2-3):99–102.
[77] Katsuda T, Oki K, Ochiya T. “Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer’s Disease Therapeutics”. Methods in molecular biology. 2014 Aug 2
[78] Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, Yuan X, McBain CJ. “A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity”. J Neurosci 2011; 31: 10948–10970 7
[79] Tong LM, Djukic B, Arnold C, Gillespie AK, Yoon SY, Wang MM et al. “Inhibitory interneuron progenitor transplantation restores normal learning and memory in apoE4 knock-in mice without or with Aβ accumulation”. JNeurosci2014; 34:9506–9515.
[80] Daadi MM, Lee SH, Arac A, Grueter BA, Bhatnagar R, Maag AL et al. “Functional engraftment of the medial ganglionic eminence cells in experimental stroke model”. Cell Transplant 2009; 18:815–826.
[81] Morgan RJ, Santhakumar V, Soltesz I. Modeling the dentate gyrus. Prog Brain Res 2007; 163:639–658.
[82] Liu Y, Weick JP, Liu H, Krencik R, Zhang X, Ma L et al. “Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits”. Nat Biotechnol 2013; 31:1–10.
[83] Akiyama H, Barger S, Barnum S, et al. “Inflammation and Alzheimer’s disease”. Neurobiol Aging. 2000; 21:383–421.
[84] Ylostalo JH, Bartosh TJ, Coble K, et al. “Human Mesenchymal Stem/Stromal Cells (hMSCs) Cultured as Spheroids are Self-activated to Produce Prostaglandin E2 (PGE2) that Directs Stimulated Macrophages into an Anti-inflammatory Phenotype” . Stem Cells. 2012
[85] Kim JY, Kim DH, Kim JH, et al. “Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-beta plaques”. Cell Death Differ. 2011; 19:680–691.
[86] Nikolic WV, Hou H, Town T, et al. “Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice”. Stem Cells Dev. 2008; 17:423–439.
[87] Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA. “Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats”. Cell biology international. 2014 Dec ;38(12):1367–83.
[88] Chen WW, Blurton-Jones M. Concise review: Can stem cells be used to treat or model Alzheimer’s disease? Stem cells . 2012 Dec ;30(12):2612–8.
[89] Mollison KW, Fey TA, Krause RA, et al. “Nephrotoxicity studies of the immunosuppressants tacrolimus (FK506) and ascomycin in rat models”. Toxicology. 1998; 125:169–181.
[90] Maucksch C, Vazey EM, Gordon RJ, Connor B. Stem cell-based therapy for Huntington’s disease. Journal of cellular biochemistry.2013 Apr; 114(4):754–63.
[91] Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. “Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease”. J Neurosci 1991; 11:1649– 1659.
[92] Blum D, Gall D, Cuvelier L, Schiffmann SN.“Topological analysis of striatal lesions induced by 3-nitropropionic acid in the Lewis rat” Neuroreport 2001; 12:1769–1772.
[93] Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW. “Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid” J Neurosci 1993; 13:4181–4192
[94] Ryu JK, Kim J, Cho SJ, Hatori K, Nagai A, Choi HB, Lee MCTf, McLarnon JG, Kim SU. “Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease”. Neurobiol Dis 2004; 16:68–77
[95] McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, Kordower JH. “Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease”. J Comp Neurol 2004; 475:211 219
[96] Lee ST, Park JE, Lee K, Kang L, Chu K, Kim SU, Kim M, Roh JK. “Noninvasive method of immortalized neural stem-like cell transplantation in an experimental model of Huntington’s disease”. J Neurosci Methods 2006; 152: 250–254.
[97] Kim M, Lee S-T, Chu K, Kim SU. “Stem cell-based cell therapy for Huntington disease: a review. Neuropathology : official journal of the Japanese Society of Neuropathology” 2008; 28(1):1–9.
[98] Im, W.; Lee, S. T.; Park, J. E.; Oh, H. J.; Shim, J.; Lim, J.; 31. Chu, K.; Kim, M. “Transplantation of patient-derived adipose stem cells in YAC128 Huntington’s disease transgenic mice”. PLoS Curr. 2:RRN1183; 2010.
[99] Vazey EM, Dottori M, Jamshidi P, Tomas D, Pera MF, Horne M, Connor B. “Comparison of transplant efficiency between spontaneously derived and noggin-primed human embryonic stem cell neural precursors in the quinolinic acid rat model of Huntington’s disease”. Cell Transplant 2010; 19:1055– 1062
[100] Maucksch, C.; Vazey, E. M.; Gordon, R. J.; Connor, B. 49. Stem cell-based therapy for Huntington’s disease. J. Cell. Biochem. 114(4):754–763; 2013.
[101] Liu T, Im W, Lee S-T, Ban J-J, Chai YJ, Lee M, et al. “Modulation of mitochondrial function by stem cell-derived cellular components” Biochemical and biophysical research communications. 2014; 448(4):403–8.
[102] Jiang Y, Lv H, Huang S, Tan H, Zhang Y, Li H. “Bone marrow mesenchymal stem cells can improve the motor function of a Huntington’s disease rat model”. Neurological research. 2011; 33(3):331–7.
[103] Serrano Sánchez T, Alberti Amador E, Lorigados Pedre L, Blanco Lezcano L, Diaz Armesto I, Bergado JA. “BDNF in quinolinic acid lesioned rats after bone marrow cells transplant.” Neuroscience letters. 2014; 559:147–51.
[104] Snyder BR, Chiu AM, Prockop DJ, Chan AW. “Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease” PLoS ONE 2010; 5:e9347
[105] Lin YT, Chern Y, Shen CK, Wen HL, Chang YC, Li H, Cheng TH, Hsieh-Li HM. “Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington’s disease mouse models” PLoS ONE 2011 6:e22924.
[106] Rossignol J, Fink K, Davis K, Clerc S, Crane A, Matchynski J, et al. “Transplants of adult mesenchymal and neural stem cells provide neuroprotection and behavioral sparing in a transgenic rat model of Huntington’s disease”. Stem cells. 2014; 32(2):500–9.
[107] Sadan O, Shemesh N, Cohen Y, Melamed E, Offen D. “Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases.” The Israel Medical Association journal : IMAJ. 2009; 11(4):201–4.
[108] Petit GH, Olsson TT, Brundin P. “The future of cell therapies and brain repair: Parkinson’s disease leads the way”. Neuropathology and applied neurobiology. 2014; 40(1):60–70.
[109] de Munter JP, Wolters EC. ‘Autologous stem cells in neurology: is there a future?” J Neural Transm 2013; 120:65–73.
[110] de Munter JPJM, Melamed E, Wolters EC. “Stem cell grafting in parkinsonism--why, how and when. Parkinsonism & related disorders” 2014; 20 Suppl 1:S150–3.
[111] Capitelli CS, Lopes CS, Alves AC, Barbiero J, Oliveira LF, da Silva VJD, et al. “Opposite effects of bone marrow-derived cells transplantation in MPTP-rat model of Parkinson’s disease: a comparison study of mononuclear and mesenchymal stem cells” International journal of medical sciences. 2014; 11(10):1049–64.
[112] Glavaski-Joksimovic A, Bohn MC. “Mesenchymal stem cells and neuroregeneration in Parkinson’s disease” Experimental neurology. 2013; 247:25–38.
[113] Gombash SE, Lipton JW, Collier TJ, Madhavan L, Steece-Collier K, Cole-Strauss A, et al. “Striatal pleiotrophin overexpression provides functional and morphological neuroprotection in the 6-hydroxydopamine model”. Molecular therapy : the journal of the American Society of Gene Therapy. 2012; 20(3):544–54.
[114] Gu, H.; Wang, J.; Du, N.; Tan, J.; Johnstone, B.; Du, Y. “Adipose stromal cells-conditioned medium blocks 6- hydroxydopamine induced neurotoxicity and reactive oxygen species”. Neurosci. Lett. 544:15–19; 2013.
[115] Zhou, Y.; Sun, M.; Li, H.; Yan, M.; He, Z.; Wang, W.; Lu, 87. S. “Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy” Cytotherapy 15(4):467–480; 2013.
[116] Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Eugene Redmond D, Taylor HS. “Endometrial stem cell transplantation in MPTP- exposed primates: an alternative cell source for treatment of Parkinson’s disease” Journal of cellular and molecular medicine. 2015; 19(1):249–56.
[117] Speciale SG. “MPTP Insights into parkinsonian neurodegeneration. Neurotoxicol Teratol” 2002; 24:607-620.
[118] Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli Vet al. “Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease” Proc Natl Acad Sci USA2008; 105: 5856–61.
[119] Kikuchi T, Morizane A, Doi D, Onoe H, Hayashi T, Kawasaki T, Saiki H, Miyamoto S, Takahashi J. “Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease”. J Parkinsons Dis 2011; 1: 395–412.
[120] Okano H, Yamanaka S. “iPS cell technologies: significance and applications to CNS regeneration and disease” Molecular brain. 2014; 7:22.
[121] Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. “Direct conversion of fibroblasts to functional neurons by defined factors” Nature 2010; 463: 1035–41.
[122] Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A et al. “Direct conversion of human fibroblasts to dopaminergic neurons” Proc Natl Acad SciUSA2011; 108: 10343–8
[123] .Riley, J., Glass, J., Feldman, E. L., Polak, M., Bordeau, J., Federici, T., … Boulis, N. M. (2014). Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: A phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery, 74(1), 77–87.
[124] Martinez, H. R., Gonzalez-Garza, M. T., Moreno-Cuevas, J. E., Caro, E., Gutierrez-Jimenez, E., & Segura, J. J. (2009). Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy (Vol. 11).
[125] Mazzini, L., Fagioli, F., Boccaletti, R., Mareschi, K., Oliveri, G., Olivieri, C., … Madon, E. (2003). Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases (Vol. 4).
[126] Luan, Z., Liu, W., Qu, S., Du, K., He, S., Wang, Z., … Gong, X. (2012). Effects of neural progenitor cell transplantation in children with severe cerebral palsy. Cell Transplantation, 21(SUPPL. 1).
[127] Mancías-Guerra, C., Marroquín-Escamilla, A. R., González-Llano, O., Villarreal-Martínez, L., Jaime-Pérez, J. C., García-Rodríguez, F., … Gómez-Almaguer, D. (2014). Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: An open-label phase I trial. Cytotherapy, 16(6), 810–820.
[128] Wang, X., Cheng, H., Hua, R., Yang, J., Dai, G., Zhang, Z., … An, Y. (2013). Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: A preliminary clinical study. Cytotherapy, 15(12), 1549–1562.
[129] Giordano, R., Canesi, M., Isalberti, M., Isaias, I. U., Montemurro, T., Viganò, M., … Pezzoli, G. (2014). Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: translation into a phase I controlled, randomized clinical study. Journal of Translational Medicine, 12, 14.
[130] Brazzini, A., Cantella, R., De la Cruz, A., Yupanqui, J., León, C., Jorquiera, T., … Saenz, L. N. (2010). Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. Journal of vascular and interventional radiology : JVIR (Vol. 21).
[131] Venkataramana, N. K., Kumar, S. K. V, Balaraju, S., Radhakrishnan, R. C., Bansal, A., Dixit, A., … Totey, S. M. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Translational Research, 155(2), 62–70.
[132] Dai, G., Liu, X., Zhang, Z., Yang, Z., Dai, Y., & Xu, R. (2013). Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Research, 1533, 73–79.
[133] Frolov, A. A., & Bryukhovetskiy, A. S. (2012). Effects of hematopoietic autologous stem cell transplantation to the chronically injured human spinal cord evaluated by motor and somatosensory evoked potentials methods. Cell Transplantation, 21(SUPPL. 1).
[134] Cristante, A. F., Barros-Filho, T. E. P., Tatsui, N., Mendrone, A., Caldas, J. G., Camargo, A., … Marcon, R. M. (2009). Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal cord : the official journal of the International Medical Society of Paraplegia (Vol. 47).
Cite This Article
  • APA Style

    Wagih A., Elhawary S., Ellessy R. M., Esam B., Tarek I., et al. (2015). Stem Cells for Neuro-regeneration: State of the Art. American Journal of Bioscience and Bioengineering, 3(4-1), 56-70. https://doi.org/10.11648/j.bio.s.2015030401.19

    Copy | Download

    ACS Style

    Wagih A.; Elhawary S.; Ellessy R. M.; Esam B.; Tarek I., et al. Stem Cells for Neuro-regeneration: State of the Art. Am. J. BioSci. Bioeng. 2015, 3(4-1), 56-70. doi: 10.11648/j.bio.s.2015030401.19

    Copy | Download

    AMA Style

    Wagih A., Elhawary S., Ellessy R. M., Esam B., Tarek I., et al. Stem Cells for Neuro-regeneration: State of the Art. Am J BioSci Bioeng. 2015;3(4-1):56-70. doi: 10.11648/j.bio.s.2015030401.19

    Copy | Download

  • @article{10.11648/j.bio.s.2015030401.19,
      author = {Wagih A. and Elhawary S. and Ellessy R. M. and Esam B. and Tarek I. and Aamer M.},
      title = {Stem Cells for Neuro-regeneration: State of the Art},
      journal = {American Journal of Bioscience and Bioengineering},
      volume = {3},
      number = {4-1},
      pages = {56-70},
      doi = {10.11648/j.bio.s.2015030401.19},
      url = {https://doi.org/10.11648/j.bio.s.2015030401.19},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bio.s.2015030401.19},
      abstract = {Neuroregeneration (NR) is a long-sought medical dream which has intrigued vast research in the past decades. A traditional physiologic dogma that central nervous system does not regenerate has been strongly challenged in the recent years since the advent of the stem cell era. Stem cell research in the regenerative field passes through three main stages. The first stage is the in-vitro experiments which studies the exact molecular and cellular mechanisms underlying stem cell-mediated NR. The second stage is the application of these data in experimental animal settings to provide "proof of concept" of stem cell therapy in animal models. The final step is the translation of these data in pilot clinical trials. In this review, we will try to gather the different data of stem cell-mediated NR from various experimental and clinical researches.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Stem Cells for Neuro-regeneration: State of the Art
    AU  - Wagih A.
    AU  - Elhawary S.
    AU  - Ellessy R. M.
    AU  - Esam B.
    AU  - Tarek I.
    AU  - Aamer M.
    Y1  - 2015/07/09
    PY  - 2015
    N1  - https://doi.org/10.11648/j.bio.s.2015030401.19
    DO  - 10.11648/j.bio.s.2015030401.19
    T2  - American Journal of Bioscience and Bioengineering
    JF  - American Journal of Bioscience and Bioengineering
    JO  - American Journal of Bioscience and Bioengineering
    SP  - 56
    EP  - 70
    PB  - Science Publishing Group
    SN  - 2328-5893
    UR  - https://doi.org/10.11648/j.bio.s.2015030401.19
    AB  - Neuroregeneration (NR) is a long-sought medical dream which has intrigued vast research in the past decades. A traditional physiologic dogma that central nervous system does not regenerate has been strongly challenged in the recent years since the advent of the stem cell era. Stem cell research in the regenerative field passes through three main stages. The first stage is the in-vitro experiments which studies the exact molecular and cellular mechanisms underlying stem cell-mediated NR. The second stage is the application of these data in experimental animal settings to provide "proof of concept" of stem cell therapy in animal models. The final step is the translation of these data in pilot clinical trials. In this review, we will try to gather the different data of stem cell-mediated NR from various experimental and clinical researches.
    VL  - 3
    IS  - 4-1
    ER  - 

    Copy | Download

Author Information
  • Faculty of Medicine, Cairo University, Cairo, Egypt

  • Faculty of Medicine, Cairo University, Cairo, Egypt

  • Faculty of Medicine, Cairo University, Cairo, Egypt

  • Faculty of Medicine, Cairo University, Cairo, Egypt

  • Faculty of Medicine, Cairo University, Cairo, Egypt

  • Faculty of Medicine, Cairo University, Cairo, Egypt

  • Sections