American Journal of Agriculture and Forestry

| Peer-Reviewed |

Impact of 60 Years of Intensive Rice Cropping on Clay Minerals in Soils Due to Si Exportation

Received: 02 February 2017    Accepted: 17 February 2017    Published: 14 April 2017
Views:       Downloads:

Share This Article

Abstract

Rice is cultivated as staple for over half of the World’s population. In Camargue (South of France) rice fields have been established on very young soils developed from historic fluvial deposits of the Rhône River. The comparison of clay mineralogy in a paddy field cultivated for 60 years and in a control shows a significant increase of the clay crystallinity in the paddy field soil, which implies a decrease of their solubility. In the paddy soils, phytoliths, poorly crystallized clays, such as smectite and to a lesser extent kaolinite, are progressively dissolved to supply Si for rice requirements. The sustainability of the crop system requires the clearing of silica exportations.

DOI 10.11648/j.ajaf.20170503.12
Published in American Journal of Agriculture and Forestry (Volume 5, Issue 3, May 2017)
Page(s) 40-48
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Clays, Crystallinity, Rice, Silicon

References
[1] OCDE/Organisation des Nations Unies pour l’alimentation et l’agriculture, 2014. Perspectives agricoles de l’OCDE et de la FAO 2014, Éditions OCDE.
[2] Williams, R. J. P., Fraùsto da Silva, J. J. R., 1997. The natural selection of the chemical elements – The environment and Life’s chemistry, Clarendon Press, Oxford.
[3] Dove, P. M., Eston, S. F., 1992. Dissolution kinetics of quartz in sodium chloride solutions: analysis of existing data and a rate model for 25°C. Geochim. et Comoschim. Acta, 56, 4147-4156.
[4] Song, Z., Müller, K., Wang, H., 2014. Biogeochemical silicon cycle and carbon sequestration in agricultural ecosystems. Earth-Science Reviews, 139, 268-278.
[5] Gascho, G. J., 2001. Chapter 12: Silicon sources for agriculture. In: L. E. Datnoff, G. H. S., Korndörfer, G. H. (Eds.), Studies in Plant Science. Elsevier, 197-207.
[6] Matichenkov, V. V., Bocharnikova, E. A., 2001. The relationship between silica and soil physical and chemical properties. In: Datnoff, L. E., Snyder, G. H., Korndörfer, G. H. (Eds.), Silicon in Agriculture. Elsevier, Amsterdam, Netherlands, 209-215.
[7] Alexandre, A., Meunier, J. D., Colin, F., Koud, J. M., 1997. Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim. et Cosmochim. Acta, 61, 677-682.
[8] Derry, L. A., Kurtz, A. C., Ziegler, K., Chadwick, O. A., 2005. Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433: 728-731.
[9] Lindsay, W. L., 1979. Chemical equilibria in soils. Widley J & Hoboken NJ eds, 449 pp.
[10] Loucaides, S., Behrends, T., Van Cappellen, P., 2010. Reactivity of biogenic silica: Surface versus bulk charge density. Geochim. et Cosmochim. Acta, 74, 517-530.
[11] Bartoli, F., Wilding, L. P., 1980. Dissolution of biogenic opal as function of its physical and chemical properties. Soil Sci. Soc. Amer. J., 44, 873-878.
[12] Fraysse, F., Pokrovsky, O. S., Schott, J., Meunier, J. D., 2009. Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology, 258, 197-206.
[13] Jones, L. H. P., Handreck, K. A., 1967. Silica in soils, plants and animals. Advances in Agronomy, 19, 107–149.
[14] Armitage, P. L., 1975. The extraction and identification of opal phytoliths from the teeth of ungulates. Journal of Archaeological Science, 2(3), 187-197.
[15] Blecker, S. W., McCulley, R. L., Chadwick, O. A., Kelly, E. F., 2006. Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochem. Cycles, 20, GB3023, doi: 10.1029/2006GB002690.
[16] Clymans, W., Struyf, E., Govers, G., Vandevenne, F., Conley, D. J., 2011. Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences, 8, 2281-2293.
[17] Epstein, E., 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91, 11-17.
[18] Meharg, C., Meharg, A. A. 2015. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice ? Environmental and Experimental Botany, 120, 8-17.
[19] Ma, J., Takahashi, E., 2002. Soil, fertilizer and plant silicon research in Japan. Elsevier ed.
[20] Lucas, Y., Luizao, F. J., Chauvel, A., Rouiller, J., Nahon, D., 1993. The relationship between the biological activity of the rain forest and the mineral composition of the soils. Science, 260, 521–523.
[21] Dahlgren, R. A., Shoji, S., Nanzyo M., 1993. Mineralogical characteristics of volcanic ash soils, in "Volcanic Ash Soils, Genesis, Properties and Utilization", edited by S. Shoji et al., Elsevier, New York, 101– 145.
[22] Kelly, E. F., Chadwick, O. A., Hilinski, T. E., 1998. The effect of plants on mineral weathering, Biogeochemistry, 42, 21– 53.
[23] Savant, N. K., Datnoff, L. E., Snyder, G. H., 1997. Depletion of plant-available silicon in soils: A possible cause of declining rice yields. Communications in Soil Science and Plant Analysis, 28, 1245-1252.
[24] Guntzer, F., Keller, C., Poulton, P. R., McGrath, S. P., Meunier, J. D., 2012. Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant and Soil, 352, 173-184.
[25] Kraska, J. E., Breitenbeck, G. A., 2010. Survey of the silicon status of flooded rice in Louisiane. Agron. J., 102, 523 – 529.
[26] Chauvelon, P., Tournoud, M. G., Sandoz, A., 2003. Integrated hydrological modelling of a managed coastal Mediterranean wetland (Rhone delta, France): initial calibration. Hydrology and Earth System Sciences, 7, 123-131.
[27] Mouret, J. C., 2004. Les potentialités agroclimatiques et la place du riz dans la dynamique d’évolution des systèmes de culture en Camargue. Conférence donnée à Agropolis Museum le 6 octobre 2004. http://www.museum.agropolis.fr/pages/savoirs/camargue/.
[28] Boutheyre, G., Duclos, G., 1994. Carte pédologique de France au 1/100 000, Arles N-22. Service d’Etude des Sols et de la Carte pédologique de France, Orléans, France.
[29] Irfan, K., 2013. Adaptation of the generic crop model STICS for rice (Oryza sativa L.) using farm data in Camargue. Thesis PhD. Aix Marseille University, Marseille, France.
[30] Cary, L., 2005. Mobilité des éléments selon les alternances d'aérobie-anaérobie dans un écosystème rizicole en Camargue, Thèse de Doctorat, Aix-Marseille University.
[31] Cary, L., Trolard, F., 2006. Effects of irrigation on geochemical processes in a paddy soil and in groundwater in Camargue (France). J. Geochem. Explor., 88, 177-180.
[32] Vella, C. 1999. Perception et évaluation de la mobilité du littoral sur la marge orientale du delta du Rhône. PhD thesis, Université de Provence, Marseille, France.
[33] Shrivastava, V. S., 2009. X-ray Diffraction and Mineralogical Study of Soil: A Review. J. Applied Chem. Res., 9, 41-51.
[34] Wada, K., Yamada, H., 1969. Hydrazine intercalation-interstalation for differenciation of kaolin minerals from chlorites. Am. Miner., 4, 334-339.
[35] Bradley, W., 1945. Molecular associations between montmorillonite and some polyfunctional organic liquids. J. Amer. Chem.Soc., 67, 975-981.
[36] DecompXR, 2015. Decomposition program is available for download from: http://www.isterre.fr/spip.php?action=acceder_document&document&arg=3132&cle=a38112d2714a366402fed5b6b16ddf3a6be96ae3&file=zip%2FDecompXR.zip.
[37] Lanson, B., 1997. Decomposition of experimental x-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays & Clay Miner., 45, 132-146.
[38] Lanson, B., 1990. Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cours de la diagenèse. PhD thesis, Paris University, France.
[39] Kelly, E. F., 1990. Methods for extracting opal phytoliths from soil and plant material. Doc. of the Department of Agronomy, Colorado State University, 10pp.
[40] Cary, L., Alexandre, A., Meunier, J. D., Boeglin, J. L., Braun, J. J., 2005. Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochemistry, 74, 101-114.
[41] Nawaz, F. M., Bourrié, G., Trolard, F., 2013. Soil compaction impact and modeling: A review. Agronomy for Sustainable Development, doi: 10.1007/s13593- 011-0071-8.
[42] Desplanques, V., Cary, L., Mouret, J. C., Trolard, F., Bourrié, G., Grauby, O., Meunier, J. D., 2006. Silicon transfers in a rice field in Camargue (France). J. Geochem. Explor., 88, 190–193.
[43] Ollivier, P., Hamelin, B., Radakovitch, O., 2010. Seasonal variations of physical and chemical erosion: a three-year survey of the Rhône River (France). Geochim. et Cosmochim. Acta, 74, 907-927.
[44] Tournassat, C., Gailhanou, H., Crouzet, C., Braibant, G., Gautier, A., and Gaucher, E. C., 2009. Cation Exchange Selectivity Coefficient Values on Smectite and Mixed-Layer lllite/Smectite Minerals. Soil Science Society of America Journal of Agricultural Meteorology, 73, 928-942.
[45] Klotzbücher, T., Marxen, A., Jahn, R., Vetterlein, D., 2016. Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake. Nutr Cycl Agroecosyst, doi: 10.1007/s10705-016-9782-1.
Author Information
  • INRA (National Institute of Research in Agronomy), Université d’Avignon et des Pays du Vaucluse, UMR Emmah, Avignon, France

  • INRA (National Institute of Research in Agronomy), Université d’Avignon et des Pays du Vaucluse, UMR Emmah, Avignon, France

  • Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, Pakistan

  • BRGM (French Geological Survey), Nord Pas-de-Calais Regional Direction, Lezennes, France

  • INRA (National Institute of Research in Agronomy), IRD (Institute of Research & Development), SupAgro Monptellier, UMR Innovation, Montpellier, France

  • INRA (National Institute of Research in Agronomy), Université d’Avignon et des Pays du Vaucluse, UMR Emmah, Avignon, France

Cite This Article
  • APA Style

    Kamran Irfan, Fabienne Trolard, Tanvir Shahzad, Lise Cary, Jean-Claude Mouret, et al. (2017). Impact of 60 Years of Intensive Rice Cropping on Clay Minerals in Soils Due to Si Exportation. American Journal of Agriculture and Forestry, 5(3), 40-48. https://doi.org/10.11648/j.ajaf.20170503.12

    Copy | Download

    ACS Style

    Kamran Irfan; Fabienne Trolard; Tanvir Shahzad; Lise Cary; Jean-Claude Mouret, et al. Impact of 60 Years of Intensive Rice Cropping on Clay Minerals in Soils Due to Si Exportation. Am. J. Agric. For. 2017, 5(3), 40-48. doi: 10.11648/j.ajaf.20170503.12

    Copy | Download

    AMA Style

    Kamran Irfan, Fabienne Trolard, Tanvir Shahzad, Lise Cary, Jean-Claude Mouret, et al. Impact of 60 Years of Intensive Rice Cropping on Clay Minerals in Soils Due to Si Exportation. Am J Agric For. 2017;5(3):40-48. doi: 10.11648/j.ajaf.20170503.12

    Copy | Download

  • @article{10.11648/j.ajaf.20170503.12,
      author = {Kamran Irfan and Fabienne Trolard and Tanvir Shahzad and Lise Cary and Jean-Claude Mouret and Guilhem Bourrié},
      title = {Impact of 60 Years of Intensive Rice Cropping on Clay Minerals in Soils Due to Si Exportation},
      journal = {American Journal of Agriculture and Forestry},
      volume = {5},
      number = {3},
      pages = {40-48},
      doi = {10.11648/j.ajaf.20170503.12},
      url = {https://doi.org/10.11648/j.ajaf.20170503.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajaf.20170503.12},
      abstract = {Rice is cultivated as staple for over half of the World’s population. In Camargue (South of France) rice fields have been established on very young soils developed from historic fluvial deposits of the Rhône River. The comparison of clay mineralogy in a paddy field cultivated for 60 years and in a control shows a significant increase of the clay crystallinity in the paddy field soil, which implies a decrease of their solubility. In the paddy soils, phytoliths, poorly crystallized clays, such as smectite and to a lesser extent kaolinite, are progressively dissolved to supply Si for rice requirements. The sustainability of the crop system requires the clearing of silica exportations.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Impact of 60 Years of Intensive Rice Cropping on Clay Minerals in Soils Due to Si Exportation
    AU  - Kamran Irfan
    AU  - Fabienne Trolard
    AU  - Tanvir Shahzad
    AU  - Lise Cary
    AU  - Jean-Claude Mouret
    AU  - Guilhem Bourrié
    Y1  - 2017/04/14
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajaf.20170503.12
    DO  - 10.11648/j.ajaf.20170503.12
    T2  - American Journal of Agriculture and Forestry
    JF  - American Journal of Agriculture and Forestry
    JO  - American Journal of Agriculture and Forestry
    SP  - 40
    EP  - 48
    PB  - Science Publishing Group
    SN  - 2330-8591
    UR  - https://doi.org/10.11648/j.ajaf.20170503.12
    AB  - Rice is cultivated as staple for over half of the World’s population. In Camargue (South of France) rice fields have been established on very young soils developed from historic fluvial deposits of the Rhône River. The comparison of clay mineralogy in a paddy field cultivated for 60 years and in a control shows a significant increase of the clay crystallinity in the paddy field soil, which implies a decrease of their solubility. In the paddy soils, phytoliths, poorly crystallized clays, such as smectite and to a lesser extent kaolinite, are progressively dissolved to supply Si for rice requirements. The sustainability of the crop system requires the clearing of silica exportations.
    VL  - 5
    IS  - 3
    ER  - 

    Copy | Download

  • Sections