Please enter verification code
Intracellular Redox Status and Cell Death Induced by H2O2 in a Human Retinal Epithelial Cell Line (ARPE-19)
American Journal of BioScience
Volume 3, Issue 3, May 2015, Pages: 93-113
Received: Apr. 7, 2015; Accepted: Apr. 18, 2015; Published: May 13, 2015
Views 4916      Downloads 163
Fernández Angulo Daniela, Department of LIBAF, Rubio Pharma y Asociados S.A. de C.V. Blvd. El Llano. Hermosillo, Sonora, Mexico
Lewis Luján Lidianys María, Department of LIBAF, Rubio Pharma y Asociados S.A. de C.V. Blvd. El Llano. Hermosillo, Sonora, Mexico
Iloki Assanga Simon Bernard, Department of LIBAF, Rubio Pharma y Asociados S.A. de C.V. Blvd. El Llano. Hermosillo, Sonora, Mexico
Gil-Salido Armida Andrea, Department of LIBAF, Rubio Pharma y Asociados S.A. de C.V. Blvd. El Llano. Hermosillo, Sonora, Mexico
Lara Espinoza Claudia Lizeth, Department of LIBAF, Rubio Pharma y Asociados S.A. de C.V. Blvd. El Llano. Hermosillo, Sonora, Mexico
Rubio-Pino José Luis, Department of LIBAF, Rubio Pharma y Asociados S.A. de C.V. Blvd. El Llano. Hermosillo, Sonora, Mexico
Article Tools
Follow on us
Hydrogen peroxide is a normal by-product of cellular metabolism that in higher concentrations can cause oxidative stress. Reactive oxygen species impair the physiological functions of retinal pigment epithelial (RPE) cells, which are known as one major cause of ocular pathologies. Most studies investigating the influence of H2O2 on cells in culture but H2O2 concentrations are not sustained in culture medium. Continuous generation using glucose oxidase (GOx) system allows application of relevant low H2O2 concentrations over physiologically relevant times periods (up to 24 h). Recent findings suggest that bolus and GOx treatments can lead to different cellular response, thus warranting a quantitative comparison between the two approaches. When added as a pulse H2O2 is rapidly depleted. Continuous generation of H2O2 produces different behavior in function of GOx activities. Cytotoxicity analyses show that cells can tolerate short exposure to high H2O2 doses delivered as a pulse but are susceptible to lower continuous doses. Application of hydrogen peroxide causes a concentration-dependent decrease in the intracellular glutathione (GSH) content that was accompanied by a matching decrease in the glutathione peroxide activity and reducing power (FRAP).
Hydrogen Peroxide, Glucose Oxidase, Arpe-19 Cells, Cellular Redox Status, Free Radicals
To cite this article
Fernández Angulo Daniela, Lewis Luján Lidianys María, Iloki Assanga Simon Bernard, Gil-Salido Armida Andrea, Lara Espinoza Claudia Lizeth, Rubio-Pino José Luis, Intracellular Redox Status and Cell Death Induced by H2O2 in a Human Retinal Epithelial Cell Line (ARPE-19), American Journal of BioScience. Vol. 3, No. 3, 2015, pp. 93-113. doi: 10.11648/j.ajbio.20150303.15
Bienert, G.P; Schjoerring, J. K.; Jahn, T. P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta 1758:994-1003; 2006.
Gulden, M.; Jess, A.; Kammann, J.; Masr, E.; Seibert, H. Cytotoxic potency of in cell cultures: Impact of cell concentration and exposure time. Free Radical Biology and Medicine 49 (2010) 1298-1305.
Kim, M-H., Jin, C., Yang, J-w., Chung, S-M., Kwag., Yoo, J-S. Hydrogen Peroxide-Induced Cell Death in a Human Retinal Pigment Epithelial Cell Line, ARPE-19. Korean J Ophthalmol. 2003 Jun;17(1):19-28
Kaczara, P.; Sarna, T.; Burke, J.M. Dynmics of H2=2 availability to ARPE-19 culture in models of oxidative stress. Free Radical Biology and Medicine 48(1064-1070); 2010.
Zhang, H., Liu, Y. Y., Jiang, Q., Li, K.R., Zhao, Y. X., Cao, C., Yao, J. Salvianolic acid A protects RPE cells against oxidative stress through activation of Nrf2/HO-1 signaling. Free Radical Biology and Medicine 69 (2014) 219-228.
Qenaei, A. A., Yiakouvaki, A., Reelfs, O., Santambrogio, P., Levi, S., Hall, N.D, Tyrrell, R.M., Pourzand, C. Role of intracellular labile iron, ferritin, and antioxidant defense in resistance of chronically adapted Jurkat T cell to hydrogen peroxide. Free Radical Biology and Medicine 68 (2014) 87-100.
Cano, M., Wang, L., Wan, J., Bradley, P.B, Ebrahimi, K., Qian, J., Handa, T. Oxidative stress induces mitochondrial dysfunction and a protective unfolded protein response in RPE cells. Free radical Biology & Medicine 69 (2014) 1-14.
Kucuksayan, E., Konuk, E. K., Demir, N., Mutus, B., Aslan, M. Neutral sphingomyelinase inhibition decreases ER stress-mediated apoptosis and inducible nitric oxide synthase in retinal pigment epithelial cells. Free Radical Biology and Medicine 72(113-123); 2014.
Gil, L.; Martinez G.; González, I.; Tarinas A.; Alvarez A.; Giuliani, R.; Tápanes, R.; Pérez J.; León, O. S. (2003). Contribution to characterization of oxidative stress in HIV/AIDS patients, Pharmacological Research 47(3): 217-224.
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63; 1983.
Iloki S, Lewis L, Rivera G, Gil A, Acosta A, Meza C, Rubio J: Effect of maturity and harvest season on antioxidant activity, phenolic compounds and ascorbic acid of Morinda citrifolia L. (noni) grown in Mexico. Afr J Biotechnol 2013, 12(29): 4630-4639.
Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254; 1976.
Bai, Y. P; Hu, C. P.; Yuan, Q.; Peng, J.; Shi. R. Z.; Yang, T. L.; cao, Z. H.; Li, Y. J.; Cheng, G.; Zhang, G. G. Role of VPO1, a newly identified heme-containing peroxidase, in ox-LDL induced endothelial cell apoptosis. Free radical Biology & Medicine 51 (2011) 1492-1500.
García, P.H.M. Electroforesis en geles de poliacrilamida: fundamentos, actualidad e importancia. UNIV DIAG 2000; 1(29: 31-41.
Benzie IFF, Strain JJ: The ferric reducing abillity of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 1996, 239:70-76.
Kim, Y. H.; Berry, A. H.; Spencer, D. S.; Stites, W. E. Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Eng 14:343-347; 2001.
Sobotta, M. C; Barata, A.G.; Schmidt, U.; Mueller, S.; Millonig, G.; Dick, T.P. Exposing cells H2O2: A quantitative comparison between continuous low-dose and one-time high-dose treatments. Free Radical Biology and Medicine 60(2013) 325-335.
Dringen, R.; Hammprecht, B. Involvement of glutathione peroxidase and catalase in the disposal exogenous hydrogen peroxide by cultured astroglial cells. Brain Res. 759:67-75; 1997.
Antunes, F; Cadenas, E. Estimation of gradient across biomembranes. FEBS Lett. 475:121-126; 2000.
Makino, N; Mise, T.; Sagara, J. Kinetics of hydrogen peroxide elimination by astrocytes and C6 glioma cells: analysis based on a mathematical model. Biochim. Biophys. Acta 1780:927-936; 2008.
Panieri, E; Gogvadze, V.; Norberg, E.; Venkatesh, R:; Orrenius, S.; Zhivotovky, B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radical Biology and Medicine 57 (2013) 176-187.
Andrae, U.; Singh, J.; Ziegler-Skylakakis, K. Pyruvate and related α-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol. Lett. 28:93-98; 1985.
Carballal, S.; Radi, R.; Kirk, M.: C.; Barnea, S.; Freeman, B.A.; Alvarez, B. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxinitrite. Biochemistry 42:9906-9914 2003.
Del Priore, L. V., Kuo, Y. H., Tezel, T.H. Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest. Ophthalmol. Visual Sci. 43:3312-3318; 2002.
Su, J. D.; Yen, J. H.; Li, S.; Weng, C. Y.; Lin, M. H. 3, 4Didemethhylnobiletin induces phase II detoxification gene expression and modulates P13K/Akt signaling in PC12 cells. Free Radical Biology and Medicine 52 (2012) 126-141.
Zhang, X.; Zhou, J.; Fernandes, A. F.; Sparrow, J. R.; Pereira, P.; Taylor, A.; Shang, F. The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest. Opthalmol. Visual Sci. 49:3630; 2008.
Yu, Y. Xing, K.; Badama, R.; Kuszynski, C.A.; Wu. H.; Lou, M.F. Overexpression of thioredoxin-binding protein 2 increases oxidation sensitivity and apoptosis in human lens epithelial cells. Free Radical Biology and Medicine 57(92-104); 2013.
Kim, Y.N., Jung, H.Y., Eum, W.S., Kim, D.W., Shin, M.J., Ahn, E.H., Kim, S.J., Lee, C.H., Yong, J.I., Ryu, E.J., Park, J., Choi, J.H., Hwang, I.K., Choi, S.Y. Neuroprotective effects of PEP-1-carbonyl reductase 1 against oxidative stress induced ischemia neuronal cell damage. Free radical Biology & Medicine 69 (2014) 181-196.
Eno, C.O., Zhao, G., Venkatanarayan, A., Wang, B., Flores, E. R., Li, C. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress. Free radical Biology and Medicine 65 (2013) 26-37.
Berndt, C., Kurz, T., Selenius, M., Fernandes, A.P., Edgren, M,R., Brunk, U.T. Chelation of lysosomal iron protects against ionizing radiation. Biochem. J. 432:295-301; 2010.
Castro J. P., Ott, C. Jung T., Grune T., Almeida H. Carbonylation of the cytoskeletal protein actin leads to aggregate formation. Free radical Biology & Medicine 53 (2012) 916-925.
Hatem, E., Berthonaud, V., Dardalhon, M., Lagniel, G., Cornu, P.B., Huang, M.E., Labarre, J., chedin, S. Glutathione is essential to preserve nuclear function and cell survival under oxidative stress. Free Radical Biology and Medicine 67 (2014) 103-114.
Wang, L.; Kondo, N.; Cano, M.; Ebrahimi, K.; Yoshida, T.; Barnett, B. P.; Biswal, S.; Handa, J. T. Nrf2 signaling modulates cigarette smoke-induced complement activation in retinal pigmented epithelial cells. Free Radical Biology and Medicine 70 (2014) 155-166.
Thurman, J.M.; Renner, B.; Kunchithapautham, K.; Ferreira, V.P.; Pangburn, M. K.; Ablonczy, Z.; Tomlinson, S.; Holers, V. M.; Rohrer, B. Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J. Biol. Chem. 284:16939-16947; 2009.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186