| Peer-Reviewed

Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release

Received: 28 April 2014    Accepted: 3 June 2014    Published: 20 June 2014
Views:       Downloads:
Abstract

A supercritical carbon dioxide (SCC) assisted process was developed to synthesize protein supported poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites (PNCs). The process involve 2,2-azobisisobutyronitrile initiated insitu polymerization of 2-dimethylaminoethyl methacrylate in presence of ferrite nanoparticles and bisacrylamide at 90±1 oC, 1200 psi over 6 hr in SCC. This was followed by subsequent loading of bovine serum albumin (BSA) as a model protein over PNCs in phosphate buffer (PBS, pH 7.4) at 1200 psi, 35±1⁰C over additional 2 hr in SCC. The formation of PNCs was ascertained through Ultra violet-visible, Fourier transform-infrared, X-ray diffraction spectra, transmission electron, atomic force microscopy and magnetometry. The developed process extends large scale production of nanomagnetic PNCs suitable as carrier for protein release applications with optimal release properties. The release of protein from PNCs under in vitro in PBS down to nanomolar range with high temporal resolution, speed and reproducibility was quantified through square wave voltammetry.

Published in International Journal of Biomedical Materials Research (Volume 2, Issue 1)
DOI 10.11648/j.ijbmr.20140201.11
Page(s) 1-6
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Supercritical Synthesis, Nanocomposites, Protein Release, Square Wave Voltammetry

References
[1] Brunner, G . Ann Rev Chem. Biomol. Engg.2010, 1, 321.
[2] Ohde, H, Wai, C.M, Rodriguez, J.M, Coll. Polym. Sci. 2007, 285, 475.
[3] Cao, L , Chen, L , Jiao, J , Zhang, S , Gao, W. Coll. Polym. Sci.2007, 285,1229.
[4] Pathak, P , Meziani, M.J , Sun, Y.P . Exp. Op. Drug Del. 2,747.
[5] Watson, M.S , Whitaker, M. J , Howdle, S.M , Shakesheff, K.M .Adv. Mat.2002,14, 1802.
[6] Hile, D.D , Pishko, M.V. J. Del. Targ. Therap. Agents.2004,11, 287.
[7] Caliceti, P , Salmaso, S , Elvassore, N , Bertucco, A. J.Control Re-lease.2004,94, 195.
[8] Ginty, P.J, Barry, J.J.A , White, L.J , Howdle, S.M, Shakesheff, K.M. Eur J. Phar. Biopharmaceutics,2008, 68, 82.
[9] Kang, Y, Yang, Y, Ouyang, C, Yin, P, Huang, G, Yao, Z, Liao, Y. Carbo-hydrate Polym.2009, 7, 244.
[10] Kluge, J, Fusaro, F, Casas, N, Mazzotti, M, Muhrer, G. J. Supercrit. Flu-ids.2009,50, 327.
[11] Wang, C, Wang, J, Gao, W, Jiao, J, Feng H, Liu, X, Chen, L. J. Coll. Interf. Sci.2010, 343, 141.
[12] Yang, Y, Tang, G, Zhang, H, Zhao, Y, Yuan, X, Fan, Y, Wang, M. Mat. Sci. Engg.2011, C31, 350.
[13] Wang, J. .Acc. Chem. Res. 2002, 35,811.
[14] Schwarz, A, Bagel, O, Girault ,H.H. Electroana-lysis.2000, 12,811.
[15] Mora, L, Torres, K.Y.C, Clawson, C, Hernandez, L, Zhang, L, Wang, J. J. Control Release, 2009, 140,69.
[16] Kato, M, Kato, H, Eyama, S, Takatsu, A.J. Chromatogr. B: Analytical Technologies in the Biomedical and Life Sciences. 2009, 877,3059 (2009)
[17] Carpenter, J.F, Randolph T.W, Jiskoot F, Crommelin, W.D.J, Middaugh, C.R, Winter G. Pharm. Sci.2010, 99,2200.
[18] Horak J, Ronache,r A, Lindner, W. J, Chromatogr . 1217, 2010, 5092.
[19] Carlsson, N, Borde, A, Wölfel, S, Åkerman, B, Larsson, A. Anal. Biochem.2011, 411, 116.
[20] Pan, S, Aebersold, R, Chen, R, Rush, J, Goodlett, D.R, McIntosh, M.W, Zhang, J, Brentnall, T.A. J. Proteome Res. 2009, 8,787.
[21] Ye, H, Hill, J, Kauffmanm, J, Han, X. Anal. Biochem.2010, 400, 46.
[22] Tan J.P.K, Tam K.C. J. Control Release. 2007, 118, 87.
[23] Thatiparti, T.R, Muram, S.T, Nivasu, V.J. Biomed. Mat. Res. B: Appl. Biomat. 92B, 111.
[24] Yiu, H.H.P, Niu, H.J, Biermans, E, Tendeloo, G.V, Rosseinsky, M.J. Adv. Funct. Mat. 2010, 20, 1599.
[25] Phanapavudhikul, P, Shen, S, Ng, W.K, Tan, R.B. Drug Deliv. 2008, 15,177.
[26] Hoare, T, Antamari, J.S, Goya, G.F, Irusta, S, Lin, D, Lau, S, Padera, R, Langer, R, Kohane, D.S. Nano Lett.2009, 9,3651.
[27] Ke, F, Yuan, Y.P, Qiu, L.G;. Shen, Y.H, Xie, A.J, Zhu, J.F, Tian, X.Y, Zhang, L.D. J. Mater. Chem. 2,3843.
[28] Li, W, Gao, C, Qian, H, Ren, J, Yan, D.J Mater Chem. 2006, 16, 1852.
[29] Dong, H, Huang, J, Koepsel, R. R, Ye, P, Russell, A. J, Matyjaszewski, K. Biomacromolecules. 12, 1305.
[30] Zhou, L, Yuan, J, Yuan, W, Sui, X, Wu, S, Li, Z, Shen, D.J. J. Magn. Magn. Mater.2011, 2011, 321,2799.
[31] Zhou, L, Cai, Z, Yuan, J, Kang, Y, Yuan, W, Zhong, D. Polym Int.2011, 60, 1303.
[32] Nguyen, H, Haldorai, Y, Pham, Q. L, Shim, J. J. Mat. Sci. Engg. B.2011, 173, 773.
[33] Sun , Y, Chen , Z. L, Yang, X. X, Huang , P, Zhou, X. P, Du, X. X. Nanotechnology. 2009, 20, 135102.
[34] Chomoucka, J, Drbohlavova, J, Huska, D, Adam, V, Kizek R, Hubalek, J. Pharm. Res. 2010, 62, 144.
[35] Purushotham, S, Ramanujan, R.V. Acta Biomaterialia.2010, 6, 502.
[36] McGill, S. L, Cuylear, C. L, Adolphi, N. L, Osi´nski, M, Smyth, H. D. C., IEEE Transsaction on Nanobiosci. 2009, 8, 33.
[37] Agarwal, T, Gupta, K, Zaidi, M. G. H, Alam, S. Nanoscience and Nanotechnology, 2012, 2, 5.
[38] Jin, L, Deng, Y, Hu, J, Wang, C. J. Polym. Sci. A: Polym. Chem. 42,2011, 6081.
[39] Dai, F, Sun, P, Liu, Y, Liu, W. Biomaterials.2010, 31,559.
[40] Zhang, X. Ai , C, Ma, J, Xu J, Yang, S. J. Colloid Interf. Sci.2001, 356, 24.
[41] Chen, L, Xie, J, Aatre, K.R, Varadan, V.K. J. Nanotech. Engg. Med. 2010, 1(1), 8 pp.
[42] Gou, M. L, Qian, Z.Y, Wang, H, Tang, Y.B, Huang, M.J, Kan, B, Wen, Y.J, Dai, M, Li, X.Y, Gong, C.Y, Tu, M.J. J Mater Sci, Mater Med.2008, 19,1033.
[43] Jia, Y, Gray, G.M, Hay, J.N, Li, Y, Unali, G.F, Baines, F.L, Armes, S.P Mater. Chem.2005, 15, 2202.
[44] Xie, M, Kong, Y, Han, H, Shi, J, Ding, L, Song, C, Zhang, Y. React. Funct. Polym.2008, 68, 1601.
[45] Pimpha, N , Chaleawlert, S , Chruewkamlow N , Kasinrerk W , Talenta 2011, 84,89.
Cite This Article
  • APA Style

    Gunjan Bisht, M. G. H. Zaidi. (2014). Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release. International Journal of Biomedical Materials Research, 2(1), 1-6. https://doi.org/10.11648/j.ijbmr.20140201.11

    Copy | Download

    ACS Style

    Gunjan Bisht; M. G. H. Zaidi. Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release. Int. J. Biomed. Mater. Res. 2014, 2(1), 1-6. doi: 10.11648/j.ijbmr.20140201.11

    Copy | Download

    AMA Style

    Gunjan Bisht, M. G. H. Zaidi. Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release. Int J Biomed Mater Res. 2014;2(1):1-6. doi: 10.11648/j.ijbmr.20140201.11

    Copy | Download

  • @article{10.11648/j.ijbmr.20140201.11,
      author = {Gunjan Bisht and M. G. H. Zaidi},
      title = {Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release},
      journal = {International Journal of Biomedical Materials Research},
      volume = {2},
      number = {1},
      pages = {1-6},
      doi = {10.11648/j.ijbmr.20140201.11},
      url = {https://doi.org/10.11648/j.ijbmr.20140201.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijbmr.20140201.11},
      abstract = {A supercritical carbon dioxide (SCC) assisted process was developed to synthesize protein supported poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites (PNCs). The process involve 2,2-azobisisobutyronitrile initiated insitu polymerization of 2-dimethylaminoethyl methacrylate in presence of ferrite nanoparticles and bisacrylamide at 90±1 oC, 1200 psi over 6 hr in SCC. This was followed by subsequent loading of bovine serum albumin (BSA) as a model protein over PNCs in phosphate buffer (PBS, pH 7.4) at 1200 psi, 35±1⁰C over additional 2 hr in SCC. The formation of PNCs was ascertained through Ultra violet-visible, Fourier transform-infrared, X-ray diffraction spectra, transmission electron, atomic force microscopy and magnetometry. The developed process extends large scale production of nanomagnetic PNCs suitable as carrier for protein release applications with optimal release properties. The release of protein from PNCs under in vitro in PBS down to nanomolar range with high temporal resolution, speed and reproducibility was quantified through square wave voltammetry.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Supercritical Synthesis of Poly (2-Dimethylaminoethyl Methacrylate)/Ferrite Nanocomposites and Online Electrochemical Monitoring of Protein Release
    AU  - Gunjan Bisht
    AU  - M. G. H. Zaidi
    Y1  - 2014/06/20
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ijbmr.20140201.11
    DO  - 10.11648/j.ijbmr.20140201.11
    T2  - International Journal of Biomedical Materials Research
    JF  - International Journal of Biomedical Materials Research
    JO  - International Journal of Biomedical Materials Research
    SP  - 1
    EP  - 6
    PB  - Science Publishing Group
    SN  - 2330-7579
    UR  - https://doi.org/10.11648/j.ijbmr.20140201.11
    AB  - A supercritical carbon dioxide (SCC) assisted process was developed to synthesize protein supported poly (2-dimethylaminoethyl methacrylate)/ferrite nanocomposites (PNCs). The process involve 2,2-azobisisobutyronitrile initiated insitu polymerization of 2-dimethylaminoethyl methacrylate in presence of ferrite nanoparticles and bisacrylamide at 90±1 oC, 1200 psi over 6 hr in SCC. This was followed by subsequent loading of bovine serum albumin (BSA) as a model protein over PNCs in phosphate buffer (PBS, pH 7.4) at 1200 psi, 35±1⁰C over additional 2 hr in SCC. The formation of PNCs was ascertained through Ultra violet-visible, Fourier transform-infrared, X-ray diffraction spectra, transmission electron, atomic force microscopy and magnetometry. The developed process extends large scale production of nanomagnetic PNCs suitable as carrier for protein release applications with optimal release properties. The release of protein from PNCs under in vitro in PBS down to nanomolar range with high temporal resolution, speed and reproducibility was quantified through square wave voltammetry.
    VL  - 2
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Natural Science, Kathmandu University, Dhulikhel, Nepal

  • Department of Chemistry, G. B. Pant University of Agriculture & Technology, Pantnagar, India

  • Sections