International Journal of Biomedical Materials Research

| Peer-Reviewed |

A Comprehensive Physical, Spectroscopic, and Thermal Characterization of Withania somnifera (Ashwagandha) Root Extract Treated with the Energy of Consciousness (The Trivedi Effect®)

Received: 06 February 2017    Accepted: 18 February 2017    Published: 07 March 2017
Views:       Downloads:

Share This Article

Abstract

Withania somnifera (Ashwagandha) root extract possesses a broad range of pharmacological activities. The aim of current study was to explore the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on the physical, spectroscopic, and thermal properties of ashwagandha root extract using PXRD, PSD, FT-IR, UV-vis spectroscopy, TGA, and DSC analysis. Ashwagandha root extract was divided into two parts. One part was denoted as the control, while the other part was defined as The Trivedi Effect® - Biofield Energy Treated sample, which received The Trivedi Effect® Treatment remotely from eighteen renowned Biofield Energy Healers. The PXRD analysis exhibited that both the control and The Trivedi Effect® - Biofield Energy Treated samples were amorphous in nature. The particle size values at d10 and d50 of the treated sample were decreased by 4.66% and 6.02% and at d90 slightly increased by 0.99% compared with the control sample. The average surface area of the treated (0.130 m2/g) sample was increased by 4.84% compared with the control (0.124 m2/g) sample. The FT-IR results suggested that the force constant of O-H (stretching), and C-O (stretching) functional groups of the treated sample were reduced compared with the control sample. The UV-vis analysis revealed that the wavelength for the maximum absorbance of the control and treated samples were at 205.4 nm and 205.6 nm, respectively. The TGA thermograms exhibited three steps of the degradation process, and the total weight loss of the treated (86.45%) sample was increased by 1.44% compared with the control (85.22%) sample. The DSC analysis revealed that melting point of the treated (201.67°C) sample was reduced by 0.87% compared with the control (203.43°C) sample. The latent heat of fusion of the treated (6.77 J/g) sample was significantly decreased by 21.82% compared to the control (8.67 J/g) sample. Hence, the treated sample would be more advantageous for the better therapeutic responses compared to the control sample. These findings suggest that The Trivedi Effect® - Energy of Consciousness Healing Treatment might have the astounding capacity to enhance the solubility, dissolution, absorption, and bioavailability of ashwagandha root extract in various forms of pharmaceutical/nutraceutical formulations by modifying its particle size and surface area. Thus, The Trivedi Effect® - Energy of Consciousness Healing Treated ashwagandha root extract might provide better therapeutic response against inflammatory diseases, immunological disorders, stress, arthritis, cancer, diabetes, sexual disorders, aging and other chronic infections.

DOI 10.11648/j.ijbmr.20170501.12
Published in International Journal of Biomedical Materials Research (Volume 5, Issue 1, February 2017)
Page(s) 5-14
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Withania somnifera, Biofield Energy Healing Treatment, Biofield Energy Healers, Consciousness Energy Healing Treatment, The Trivedi Effect®, PXRD, Particle Size, TGA, DSC

References
[1] Kesarwani K, Gupta R (2013) Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed 3: 253-266.
[2] Singh N, Bhalla M, Jager P, Gilca M (2011) An overview on ashwagandha: A rasayana (rejuvenator) of ayurveda. Afr J Tradit Complement Altern Med 8: 208-213.
[3] Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH, Khalil MI (2012) Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med 12: 175.
[4] Parihar P, Shetty R, Ghafourifar P, Parihar MS (2016) Increase in oxidative stress and mitochondrial impairment in hypothalamus of streptozotocin treated diabetic rat: Antioxidative effect of Withania somnifera. Cell Mol Biol (Noisy-le-grand) 62: 73-83.
[5] Choudhary B, Shetty A, Langade DG (2015) Efficacy of Ashwagandha (Withania somnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults. Ayu. 36: 63-68.
[6] Halder B, Singh S, Thakur SS (2015) Withania somnifera root extract has potent cytotoxic effect against human malignant melanoma cells. PLoS One 10: e0137498.
[7] Verma SK, Kumar A (2011) Therapeutic uses of Withania somnifera (ashwagandha) with a note on withanolides and its pharmacological actions. Asian J Pharm Clin Res 4: 1-4.
[8] Shah N, Singh R, Sarangi U, Saxena N, Chaudhary A, Kaur G, Kaul SC, Wadhwa R (2015) Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS One 10: e0120554.
[9] Al-Awthan YS, Hezabr SM, Al-Zubairi AM, Al-Hemiri FA (2014) Effects of aqueous extract of Withania somnifera on some liver biochemical and histopathological parameters in male guinea pigs. Pak J Biol Sci 17: 504-510.
[10] Nema R, Jain P, Khare S, Pradhan A, Gupta A, Singh D (2012) Study of Withania somnifera with the spatial reference of phytochemical, FTIR and flavonoids quantification. Int J Pharm Life Sci 3. 1530-1532.
[11] Kumar V, Dey A, Hadimani MB, Marcović T, Emerald M (2015) Chemistry and pharmacology of Withania somnifera: An update. Tang (Humanitas Medicine) 5: e1.
[12] Misra L, Mishra P, Pandey A, Sangwan RS, Sangwan NS, Tuli R (2008) Withanolides from Withania somnifera roots. Phytochemistry 69: 1000-1004.
[13] Lala P, Misra L, Sangwana RS, Tuli R (2006) New withanolides from fresh berries of Withania somnifera Z. Naturforsch 61b: 1143-1147.
[14] Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50. 760-765.
[15] Budhiraja RD, Krishan P, Sudhir S (2000) Biological activity of withanolides. J Sci Ind Res 59: 904-911.
[16] Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK, Naik PK, Ilavazhagan G (2014) Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9. e105311.
[17] Sangwan NS, Sabir F, Mishra S, Bansal S, Sangwan RS (2014) Withanolides from Withania somnifera Dunal: Development of cellular technology and their production. Recent Pat Biotechnol 8: 25-35.
[18] Ku SK, Bae JS (2014) Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A. Vascul Pharmacol 60: 120-126.
[19] Gao S, Li H, Zhou XQ, You JB, Tu DN, Xia G, Jiang JX, Xin C (2015) Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats. Cell Mol Biol (Noisy-le-grand) 61: 102-106.
[20] Stenger VJ (1999) Bioenergetic fields. Sci Rev Alternative Med 3.
[21] Rogers, M (1989) "Nursing: A Science of Unitary Human Beings." In J. P. Riehl-Sisca (ed.) Conceptual Models for Nursing Practice.3rd Edn. Norwark: Appleton & Lange.
[22] Rubik B (2002) The biofield hypothesis: Its biophysical basis and role in medicine. J Altern Complement Med 8: 703-717.
[23] Nelson LA, Schwartz GE (2005) Human biofield and intention detection: Individual differences. J Altern Complement Med 11: 93-101.
[24] Nemeth L (2008) Energy and biofield therapies in practice. Beginnings. Summer 28. 4-5.
[25] Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
[26] Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4. 141.
[27] Trivedi MK, Branton A, Trivedi D, Shettigar H, Nayak G, Gangwar M, Jana S (2015) Antibiogram typing of biofield treated multidrug resistant strains of Staphylococcus species. American Journal of Life Sciences 3: 369-374.
[28] Trivedi MK, Branton A, Trivedi D, Shettigar H, Nayak G, Mondal SC, Jana S (2015) Antibiogram, biochemical reactions and genotyping characterization of biofield treated Staphylococcus aureus. American Journal of BioScience 3. 212-220.
[29] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Assessment of antibiogram of biofield energy treated Serratia marcescens. European Journal of Preventive Medicine 3. 201-208.
[30] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Effect of biofield treatment on phenotypic and genotypic characteristic of Provindencia rettgeri. Mol Biol 4. 129.
[31] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Bacterial identification using 16S rDNA gene sequencing and antibiogram analysis on biofield treated Pseudomonas fluorescens. Clin Med Biochemistry Open Access 1: 101.
[32] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Antibiogram, biochemical reactions, and genotypic pattern of biofield treated Pseudomonas aeruginosa. J Trop Dis 4: 181
[33] Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Biochemical differentiation and molecular characterization of biofield treated Vibrio parahaemolyticus. American Journal of Clinical and Experimental Medicine 3. 260-267.
[34] Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Metal Powder Report 63: 22-38, 31.
[35] Dabhade VV, Tallapragada RMR, Trivedi MK (2009) Effect of external energy on the atomic, crystalline, and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32. 471-479.
[36] Trivedi MK, Patil S, Tallapragada RM (2013) Effect of bio field treatment on the physical and thermal characteristics of vanadium pentoxide powders. J Material Sci Eng S 11: 001.
[37] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Spectroscopic characterization of chloramphenicol and tetracycline: An impact of biofield. Pharm Anal Acta 6. 395.
[38] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Spectroscopic characterization of biofield treated metronidazole and tinidazole. Med Chem 5: 340-344.
[39] Trivedi MK, Mohan R, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Evaluation of biofield energy treatment on physical and thermal characteristics of selenium powder. Journal of Food and Nutrition Sciences 3: 223-228.
[40] Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, Mishra RK (2015) Bio-field treatment: An effective strategy to improve the quality of beef extract and meat infusion powder. J Nutr Food Sci 5. 389.
[41] Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Evaluation of physical, thermal and spectroscopic properties of biofield treated p-hydroxyacetophenone. Nat Prod Chem Res 3: 190.
[42] Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Gas chromatography-mass spectrometric analysis of isotopic abundance of 13C, 2H, and 18O in biofield energy treated p-tertiary butylphenol (PTBP). American Journal of Chemical Engineering 4. 78-86.
[43] Trivedi MK, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Characterization of physical, thermal and spectral properties of biofield treated 2-aminopyridine. Science Journal of Analytical Chemistry 3: 127-134.
[44] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Agronomic characteristics, growth analysis, and yield response of biofield treated mustard, cowpea, horse gram, and groundnuts. International Journal of Genetics and Genomics 3: 74-80.
[45] Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of plant growth, yield and yield attributes of biofield energy treated mustard (Brassica juncea) and chick pea (Cicer arietinum) Seeds. Agriculture, Forestry and Fisheries 4: 291-295.
[46] Devkar ST, Kandhare AD, Sloley BD, Jagtap SD, Lin J, Tam YK, Katyare SS, Bodhankar SL, Hegde MV (2015) Evaluation of the bioavailability of major withanolides of Withania somnifera using an in vitro absorption model system. J Adv Pharm Technol Res 6: 159-164.
[47] Chereson R (2009) Bioavailability, bioequivalence, and drug selection. In: Makoid CM, Vuchetich PJ, Banakar UV (eds) Basic pharmacokinetics (1st edn) Pharmaceutical Press, London.
[48] Blagden N, de Matas M, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59: 617-630.
[49] Trivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176.
[50] Inoue M, Hirasawa I (2013) The relationship between crystal morphology and XRD peak intensity on CaSO4.2H2O. J Crystal Growth 380: 169-175.
[51] Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louër D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) Size-strain line-broadening analysis of the ceria round-robin sample. J Appl Cryst 37: 911-924.
[52] Martin AN, Patrick JS (2006) Martin's physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Phila: Lippincott Williams and Wilkins. pp. 533-560.
[53] Stuart BH (2004) Infrared spectroscopy: Fundamentals and applications in Analytical Techniques in the Sciences (AnTs). John Wiley & Sons Ltd., Chichester, UK.
[54] Nie B, Stutzman J, Xie A (2005) A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys J 88: 2833-2847.
[55] Ramachandran A, Kumar MS (2014) FT-IR, UV and antimicrobial activity Withania somnifera and Withania obtusifolia. Int J Pharm Bio Sci 5. B118-B127.
[56] Hesse M, Meier H, Zeeh B (1997) Spectroscopic methods in organic chemistry, Georg Thieme Verlag Stuttgart, New York.
[57] Srivastava A, Alam S, Shahbaaz S, Tiwari M, Mittal A, Chauhan S (2014) Formulation and evaluation of antiacne cream containing Withania somnifera. J Pharm Sci Inv 3: 348-352.
[58] Mitra D, Francis S, Varshney L (2004) Calorimetry thermal investigations on γ radiation processed natural medicinal products (ashwagandha, amla and hartiki). J Therm Anal Cal 78. 821-829.
[59] McNair H M, Trivedi K M (1992) Gas chromatography and pharmaceutical analyses. ACS Symposium Series 512: 67-84.
[60] Troy DB, Beringer P (2006) Instrumental method of analysis in Remington: The science and practice of pharmacy, 21st Edition, Lippincott Williams & Wilkins, Philadelphia, USA, pp 633.
Author Information
  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

Cite This Article
  • APA Style

    Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Cathryn Dawn Nykvist, et al. (2017). A Comprehensive Physical, Spectroscopic, and Thermal Characterization of Withania somnifera (Ashwagandha) Root Extract Treated with the Energy of Consciousness (The Trivedi Effect®). International Journal of Biomedical Materials Research, 5(1), 5-14. https://doi.org/10.11648/j.ijbmr.20170501.12

    Copy | Download

    ACS Style

    Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; Cathryn Dawn Nykvist, et al. A Comprehensive Physical, Spectroscopic, and Thermal Characterization of Withania somnifera (Ashwagandha) Root Extract Treated with the Energy of Consciousness (The Trivedi Effect®). Int. J. Biomed. Mater. Res. 2017, 5(1), 5-14. doi: 10.11648/j.ijbmr.20170501.12

    Copy | Download

    AMA Style

    Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Cathryn Dawn Nykvist, et al. A Comprehensive Physical, Spectroscopic, and Thermal Characterization of Withania somnifera (Ashwagandha) Root Extract Treated with the Energy of Consciousness (The Trivedi Effect®). Int J Biomed Mater Res. 2017;5(1):5-14. doi: 10.11648/j.ijbmr.20170501.12

    Copy | Download

  • @article{10.11648/j.ijbmr.20170501.12,
      author = {Mahendra Kumar Trivedi and Alice Branton and Dahryn Trivedi and Gopal Nayak and Cathryn Dawn Nykvist and Celine Lavelle and Daniel Paul Przybylski and Dianne Heather Vincent and Dorothy Felger and Douglas Jay Konersman and Elizabeth Ann Feeney and Jay Anthony Prague and Joanne Lydia Starodub and Karan Rasdan and Karen Mie Strassman and Leonid Soboleff and Maire Anne Mayne and Mary M. Keesee and Padmanabha Narayana Pillai and Pamela Clarkson Ansley and Ronald David Schmitz and Sharyn Marie Sodomora and Kalyan Kumar Sethi and Parthasarathi Panda and Snehasis Jana},
      title = {A Comprehensive Physical, Spectroscopic, and Thermal Characterization of Withania somnifera (Ashwagandha) Root Extract Treated with the Energy of Consciousness (The Trivedi Effect®)},
      journal = {International Journal of Biomedical Materials Research},
      volume = {5},
      number = {1},
      pages = {5-14},
      doi = {10.11648/j.ijbmr.20170501.12},
      url = {https://doi.org/10.11648/j.ijbmr.20170501.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ijbmr.20170501.12},
      abstract = {Withania somnifera (Ashwagandha) root extract possesses a broad range of pharmacological activities. The aim of current study was to explore the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on the physical, spectroscopic, and thermal properties of ashwagandha root extract using PXRD, PSD, FT-IR, UV-vis spectroscopy, TGA, and DSC analysis. Ashwagandha root extract was divided into two parts. One part was denoted as the control, while the other part was defined as The Trivedi Effect® - Biofield Energy Treated sample, which received The Trivedi Effect® Treatment remotely from eighteen renowned Biofield Energy Healers. The PXRD analysis exhibited that both the control and The Trivedi Effect® - Biofield Energy Treated samples were amorphous in nature. The particle size values at d10 and d50 of the treated sample were decreased by 4.66% and 6.02% and at d90 slightly increased by 0.99% compared with the control sample. The average surface area of the treated (0.130 m2/g) sample was increased by 4.84% compared with the control (0.124 m2/g) sample. The FT-IR results suggested that the force constant of O-H (stretching), and C-O (stretching) functional groups of the treated sample were reduced compared with the control sample. The UV-vis analysis revealed that the wavelength for the maximum absorbance of the control and treated samples were at 205.4 nm and 205.6 nm, respectively. The TGA thermograms exhibited three steps of the degradation process, and the total weight loss of the treated (86.45%) sample was increased by 1.44% compared with the control (85.22%) sample. The DSC analysis revealed that melting point of the treated (201.67°C) sample was reduced by 0.87% compared with the control (203.43°C) sample. The latent heat of fusion of the treated (6.77 J/g) sample was significantly decreased by 21.82% compared to the control (8.67 J/g) sample. Hence, the treated sample would be more advantageous for the better therapeutic responses compared to the control sample. These findings suggest that The Trivedi Effect® - Energy of Consciousness Healing Treatment might have the astounding capacity to enhance the solubility, dissolution, absorption, and bioavailability of ashwagandha root extract in various forms of pharmaceutical/nutraceutical formulations by modifying its particle size and surface area. Thus, The Trivedi Effect® - Energy of Consciousness Healing Treated ashwagandha root extract might provide better therapeutic response against inflammatory diseases, immunological disorders, stress, arthritis, cancer, diabetes, sexual disorders, aging and other chronic infections.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Comprehensive Physical, Spectroscopic, and Thermal Characterization of Withania somnifera (Ashwagandha) Root Extract Treated with the Energy of Consciousness (The Trivedi Effect®)
    AU  - Mahendra Kumar Trivedi
    AU  - Alice Branton
    AU  - Dahryn Trivedi
    AU  - Gopal Nayak
    AU  - Cathryn Dawn Nykvist
    AU  - Celine Lavelle
    AU  - Daniel Paul Przybylski
    AU  - Dianne Heather Vincent
    AU  - Dorothy Felger
    AU  - Douglas Jay Konersman
    AU  - Elizabeth Ann Feeney
    AU  - Jay Anthony Prague
    AU  - Joanne Lydia Starodub
    AU  - Karan Rasdan
    AU  - Karen Mie Strassman
    AU  - Leonid Soboleff
    AU  - Maire Anne Mayne
    AU  - Mary M. Keesee
    AU  - Padmanabha Narayana Pillai
    AU  - Pamela Clarkson Ansley
    AU  - Ronald David Schmitz
    AU  - Sharyn Marie Sodomora
    AU  - Kalyan Kumar Sethi
    AU  - Parthasarathi Panda
    AU  - Snehasis Jana
    Y1  - 2017/03/07
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijbmr.20170501.12
    DO  - 10.11648/j.ijbmr.20170501.12
    T2  - International Journal of Biomedical Materials Research
    JF  - International Journal of Biomedical Materials Research
    JO  - International Journal of Biomedical Materials Research
    SP  - 5
    EP  - 14
    PB  - Science Publishing Group
    SN  - 2330-7579
    UR  - https://doi.org/10.11648/j.ijbmr.20170501.12
    AB  - Withania somnifera (Ashwagandha) root extract possesses a broad range of pharmacological activities. The aim of current study was to explore the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on the physical, spectroscopic, and thermal properties of ashwagandha root extract using PXRD, PSD, FT-IR, UV-vis spectroscopy, TGA, and DSC analysis. Ashwagandha root extract was divided into two parts. One part was denoted as the control, while the other part was defined as The Trivedi Effect® - Biofield Energy Treated sample, which received The Trivedi Effect® Treatment remotely from eighteen renowned Biofield Energy Healers. The PXRD analysis exhibited that both the control and The Trivedi Effect® - Biofield Energy Treated samples were amorphous in nature. The particle size values at d10 and d50 of the treated sample were decreased by 4.66% and 6.02% and at d90 slightly increased by 0.99% compared with the control sample. The average surface area of the treated (0.130 m2/g) sample was increased by 4.84% compared with the control (0.124 m2/g) sample. The FT-IR results suggested that the force constant of O-H (stretching), and C-O (stretching) functional groups of the treated sample were reduced compared with the control sample. The UV-vis analysis revealed that the wavelength for the maximum absorbance of the control and treated samples were at 205.4 nm and 205.6 nm, respectively. The TGA thermograms exhibited three steps of the degradation process, and the total weight loss of the treated (86.45%) sample was increased by 1.44% compared with the control (85.22%) sample. The DSC analysis revealed that melting point of the treated (201.67°C) sample was reduced by 0.87% compared with the control (203.43°C) sample. The latent heat of fusion of the treated (6.77 J/g) sample was significantly decreased by 21.82% compared to the control (8.67 J/g) sample. Hence, the treated sample would be more advantageous for the better therapeutic responses compared to the control sample. These findings suggest that The Trivedi Effect® - Energy of Consciousness Healing Treatment might have the astounding capacity to enhance the solubility, dissolution, absorption, and bioavailability of ashwagandha root extract in various forms of pharmaceutical/nutraceutical formulations by modifying its particle size and surface area. Thus, The Trivedi Effect® - Energy of Consciousness Healing Treated ashwagandha root extract might provide better therapeutic response against inflammatory diseases, immunological disorders, stress, arthritis, cancer, diabetes, sexual disorders, aging and other chronic infections.
    VL  - 5
    IS  - 1
    ER  - 

    Copy | Download

  • Sections