Science Journal of Analytical Chemistry

| Peer-Reviewed |

Solid State Characterization of Withania somnifera (Ashwagandha) Root Extract After Treatment with Consciousness Energy Healing

Received: 17 March 2017    Accepted: 27 March 2017    Published: 13 April 2017
Views:       Downloads:

Share This Article

Abstract

Ashwagandha root extract is useful as an herbal medicine and nutraceuticals for the prevention and treatment of various diseases. The aim of the current study was to evaluate the influence of Consciousness Energy Healing Treatment (The Trivedi Effect®) on the physico-chemical, thermal and behavioral properties of ashwagandha root extract using powder X-ray diffraction (PXRD), particle size distribution analysis (PSD), Fourier transform infrared (FT-IR) spectrometry, UV-Vis spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Ashwagandha root extract was divided into two parts – one part was control without any Biofield Energy Treatment, and another part was treated with the Consciousness Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as Biofield Energy Treated sample. The PXRD analysis concluded that both the control and treated samples were amorphous in nature. The particle size values at d10, d50, and d90 of the treated sample were significantly decreased by 36.78%, 15.18%, and 5.06%, respectively compared with the control sample. Likewise, the surface area of the treated sample was significantly increased by 85.14% compared to the control sample. FT-IR results showed a small impact of Consciousness Energy Healing Treatment on the phytoconstituents of ashwagandha root extract to reduce the force constant of O-H (str.) bond. UV-vis analysis revealed that the wavelength for the maximum absorbance (λmax) of both the samples was at 206.4 in methanol. TGA revealed the three steps of thermal degradation and the total weight loss was decreased by 0.73% in the treated sample compared to the control sample. Consequently, the maximum thermal degradation temperature was found at 272.53°C and 393.35°C for two broad peaks in the treated sample was increased by 0.05% and 0.08%, respectively compared to the control the sample (272.67°C and 393.66°C). The DSC analysis indicated that the evaporation temperature and latent heat of vaporization were lowered significantly by 4.98% and 35.67%, respectively in the treated sample compared with the control sample. The current outcomes suggested that the Energy of Consciousness Healing Treatment might have the amazing capacity to enhance the solubility, dissolution, absorption, bioavailability and thermal stability of ashwagandha root extract in the various form of pharmaceutical and nutraceutical formulation by modifying its particle size and surface area. Thus, the Biofield Energy Treated ashwagandha root extract might provide better therapeutic response against inflammatory diseases, immunological disorders, sexual disorders, arthritis, stress, cancer, ageing, diabetes, and other chronic infections.

DOI 10.11648/j.sjac.20170502.11
Published in Science Journal of Analytical Chemistry (Volume 5, Issue 2, March 2017)
Page(s) 17-27
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Withania somnifera, Biofield Energy Healing Treatment, Consciousness Energy Healing, The Trivedi Effect®, PXRD, Particle Size, TGA, DSC

References
[1] Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14: 2373-2393.
[2] Singh N, Bhalla M, Jager P, Gilca M (2011) An overview on ashwagandha: A rasayana (rejuvenator) of ayurveda. Afr J Tradit Complement Altern Med 8: 208-213.
[3] Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH, Khalil MI (2012) Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med 12: 175.
[4] Parihar P, Shetty R, Ghafourifar P, Parihar MS (2016) Increase in oxidative stress and mitochondrial impairment in hypothalamus of streptozotocin treated diabetic rat: Antioxidative effect of Withania somnifera. Cell Mol Biol (Noisy-le-grand) 62: 73-83.
[5] Choudhary B, Shetty A, Langade DG (2015) Efficacy of Ashwagandha (Withania somnifera [L.] Dunal) in improving cardiorespiratory endurance in healthy athletic adults. Ayu 36: 63-68.
[6] Halder B, Singh S, Thakur SS (2015) Withania somnifera root extract has potent cytotoxic effect against human malignant melanoma cells. PLoS One 10: e0137498.
[7] Verma SK, Kumar A (2011) Therapeutic uses of Withania somnifera (ashwagandha) with a note on withanolides and its pharmacological actions. Asian J Pharm Clin Res 4: 1-4.
[8] Shah N, Singh R, Sarangi U, Saxena N, Chaudhary A, Kaur G, Kaul SC, Wadhwa R (2015) Combinations of ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS One 10: e0120554.
[9] Al-Awthan YS, Hezabr SM, Al-Zubairi AM, Al-Hemiri FA (2014) Effects of aqueous extract of Withania somnifera on some liver biochemical and histopathological parameters in male guinea pigs. Pak J Biol Sci 17: 504-510.
[10] Nema R, Jain P, Khare S, Pradhan A, Gupta A, Singh D (2012) Study of Withania somnifera with the spatial reference of phytochemical, FTIR and flavonoids quantification. Int J Pharm Life Sci 3: 1530-1532.
[11] Kumar V, Dey A, Hadimani MB, Marcović T, Emerald M (2015) Chemistry and pharmacology of Withania somnifera: An update. Tang (Humanitas Medicine) 5: e1.
[12] Misra L, Mishra P, Pandey A, Sangwan RS, Sangwan NS, Tuli R (2008) Withanolides from Withania somnifera roots. Phytochemistry 69: 1000-1004.
[13] Lala P, Misra L, Sangwana RS, Tuli R (2006) New withanolides from fresh berries of Withania somnifera Z. Naturforsch 61b: 1143-1147.
[14] Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50: 760-765.
[15] Budhiraja RD, Krishan P, Sudhir S (2000) Biological activity of withanolides. J Sci Ind Res 59: 904-911.
[16] Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK, Naik PK, Ilavazhagan G (2014) Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9: e105311.
[17] Sangwan NS, Sabir F, Mishra S, Bansal S, Sangwan RS (2014) Withanolides from Withania somnifera Dunal: Development of cellular technology and their production. Recent Pat Biotechnol 8: 25-35.
[18] Ku SK, Bae JS (2014) Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A. Vascul Pharmacol 60: 120-126.
[19] Gao S, Li H, Zhou XQ, You JB, Tu DN, Xia G, Jiang JX, Xin C (2015) Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats. Cell Mol Biol (Noisy-le-grand) 61: 102-106.
[20] Stenger VJ (1999) Bioenergetic fields. Sci Rev Alternative Med 3.
[21] Rogers, M (1989) "Nursing: A Science of Unitary Human Beings." In J. P. Riehl-Sisca (ed.) Conceptual Models for Nursing Practice. 3rd Edn. Norwark: Appleton & Lange.
[22] Rubik B (2002) The biofield hypothesis: Its biophysical basis and role in medicine. J Altern Complement Med 8: 703-717.
[23] Nelson LA, Schwartz GE (2005) Human biofield and intention detection: Individual differences. J Altern Complement Med 11: 93-101.
[24] Nemeth L (2008) Energy and biofield therapies in practice. Beginnings 28: 4-5.
[25] Koithan M (2009) Introducing complementary and alternative therapies. J Nurse Pract 5: 18-20.
[26] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Bacterial identification using 16S rDNA gene sequencing and antibiogram analysis on biofield treated Pseudomonas fluorescens. Clin Med Biochemistry Open Access 1: 101.
[27] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Effect of biofield treatment on phenotypic and genotypic characteristic of Provindencia rettgeri. Mol Biol 4: 129.
[28] Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S (2015) The potential impact of biofield treatment on human brain tumor cells: A time-lapse video microscopy. J Integr Oncol 4: 141.
[29] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Antibiogram, biochemical reactions, and genotypic pattern of biofield treated Pseudomonas aeruginosa. J Trop Dis 4: 181.
[30] Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Biochemical differentiation and molecular characterization of biofield treated Vibrio parahaemolyticus. American Journal of Clinical and Experimental Medicine 3: 260-267.
[31] Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J Microb Biochem Technol 7: 203-206.
[32] Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A multihost pathogen. J Trop Dis 3: 167.
[33] Trivedi MK, Branton A, Trivedi D, Shettigar H, Nayak G, Mondal SC, Jana S (2015) Antibiogram, biochemical reactions and genotyping characterization of biofield treated Staphylococcus aureus. American Journal of BioScience 3: 212-220.
[34] Trivedi MK, Tallapragada RM (2008) A transcendental to changing metal powder characteristics. Metal Powder Report 63: 22-38, 31.
[35] Dabhade VV, Tallapragada RMR, Trivedi MK (2009) Effect of external energy on the atomic, crystalline, and powder characteristics of antimony and bismuth powders. Bull Mater Sci 32: 471-479.
[36] Trivedi MK, Patil S, Tallapragada RM (2013) Effect of bio field treatment on the physical and thermal characteristics of vanadium pentoxide powders. J Material Sci Eng S 11: 001.
[37] Trivedi MK, Branton A, Trivedi D, Nayak G, Panda P, Jana S (2016) Gas chromatography-mass spectrometric analysis of isotopic abundance of 13C, 2H, and 18O in biofield energy treated p-tertiary butylphenol (PTBP). American Journal of Chemical Engineering 4: 78-86.
[38] Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S (2015) Evaluation of physical, thermal and spectroscopic properties of biofield treated p-hydroxyacetophenone. Nat Prod Chem Res 3: 190.
[39] Trivedi MK, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Characterization of physical, thermal and spectral properties of biofield treated 2-aminopyridine. Science Journal of Analytical Chemistry 3: 127-134.
[40] Trivedi MK, Mohan R, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Evaluation of biofield energy treatment on physical and thermal characteristics of selenium powder. Journal of Food and Nutrition Sciences 3: 223-228.
[41] Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, Mishra RK (2015) Bio-field treatment: An effective strategy to improve the quality of beef extract and meat infusion powder. J Nutr Food Sci 5: 389.
[42] Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S (2015) Physical and structural characterization of biofield treated imidazole derivatives. Nat Prod Chem Res 3: 187.
[43] Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Characterization of physical, spectral and thermal properties of biofield treated 1, 2, 4-Triazole. J Mol Pharm Org Process Res 3: 128.
[44] Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S (2015) Agronomic characteristics, growth analysis, and yield response of biofield treated mustard, cowpea, horse gram, and groundnuts. International Journal of Genetics and Genomics 3: 74-80.
[45] Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S (2015) Evaluation of plant growth, yield and yield attributes of biofield energy treated mustard (Brassica juncea) and chick pea (Cicer arietinum) seeds. Agriculture, Forestry and Fisheries 4: 291-295.
[46] Devkar ST, Kandhare AD, Sloley BD, Jagtap SD, Lin J, Tam YK, Katyare SS, Bodhankar SL, Hegde MV (2015) Evaluation of the bioavailability of major withanolides of Withania somnifera using an in vitro absorption model system. J Adv Pharm Technol Res 6: 159-164.
[47] Verma SK, Kumar A (2011) Therapeutic uses of Withania somnifera (ashwagandha) with a note on withanolides and its pharmacological actions. Asian J Pharm Clin Res 4: 1-4.
[48] Chereson R (2009) Bioavailability, bioequivalence, and drug selection. In: Makoid CM, Vuchetich PJ, Banakar UV (eds) Basic pharmacokinetics (1st edn) Pharmaceutical Press, London.
[49] Blagden N, de Matas M, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59: 617-630.
[50] Trivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176.
[51] Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J (2014) Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 9: 304-316.
[52] Buckton G, Beezer AE (1992) The relationship between particle size and solubility. Int J Pharmaceutics 82: R7-R10.
[53] Reichenbacher M, Popp J (2012) Challenges in Molecular structure determination, DOI 10.1007/978-3-642-24390-5_2, Springer-Verlag Berlin Heidelberg.
[54] Stuart BH (2004) Infrared spectroscopy: Fundamentals and applications in Analytical Techniques in the Sciences. John Wiley & Sons Ltd., Chichester, UK.
[55] Joshi P, Misra L, Siddique AA, Srivastava M, Kumar S, Darokar MP (2014) Epoxide group relationship with cytotoxicity in withanolide derivatives from Withania somnifera. Steroids 79: 19-27.
[56] Misra L, Lal P, Chaurasia ND, Sangwan RS, Sinha S, Tuli R (2008) Selective reactivity of 2-mercaptoethanol with 5β, 6β-epoxide in steroids from Withania somnifera. Steroids 73: 245-251.
[57] Gu M, Yu Y, Gunaherath GMKB, Leslie Gunatilaka AA, Li D, Sun D (2014) Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for its activity in pancreatic cancer cells. Invest New Drugs 32: 68-74.
[58] Ramachandran A, Kumar MS (2014) FT-IR, UV and antimicrobial activity Withania somnifera and Withania obtusifolia. Int J Pharm Bio Sci 5: (B) 111-117.
[59] Hesse M, Meier H, Zeeh B (1997) Spectroscopic methods in organic chemistry, Georg Thieme Verlag Stuttgart, New York.
[60] Srivastava A, Alam S, Shahbaaz S, Tiwari M, Mittal A, Chauhan S (2014) Formulation and evaluation of antiacne cream containing Withania somnifera. J Pharm Sci Inv 3: 348-352.
[61] Mitra D, Francis S, Varshney L (2004) Calorimetry thermal investigations on γ radiation processed natural medicinal products (ashwagandha, amla and hartiki). J Therm Anal Cal 78: 821-829.
Author Information
  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Global, Inc., Henderson, Nevada, USA

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

  • Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India

Cite This Article
  • APA Style

    Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, William Dean Plikerd, et al. (2017). Solid State Characterization of Withania somnifera (Ashwagandha) Root Extract After Treatment with Consciousness Energy Healing. Science Journal of Analytical Chemistry, 5(2), 17-27. https://doi.org/10.11648/j.sjac.20170502.11

    Copy | Download

    ACS Style

    Mahendra Kumar Trivedi; Alice Branton; Dahryn Trivedi; Gopal Nayak; William Dean Plikerd, et al. Solid State Characterization of Withania somnifera (Ashwagandha) Root Extract After Treatment with Consciousness Energy Healing. Sci. J. Anal. Chem. 2017, 5(2), 17-27. doi: 10.11648/j.sjac.20170502.11

    Copy | Download

    AMA Style

    Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, William Dean Plikerd, et al. Solid State Characterization of Withania somnifera (Ashwagandha) Root Extract After Treatment with Consciousness Energy Healing. Sci J Anal Chem. 2017;5(2):17-27. doi: 10.11648/j.sjac.20170502.11

    Copy | Download

  • @article{10.11648/j.sjac.20170502.11,
      author = {Mahendra Kumar Trivedi and Alice Branton and Dahryn Trivedi and Gopal Nayak and William Dean Plikerd and Peter L. Surguy and Robert John Kock and Rolando Baptista Piedad and Russell Phillip Callas and Sakina A. Ansari and Sandra Lee Barrett and Sara Friedman and Steven Lee Christie and Su-Mei Chen Liu and Susan Elizabeth Starling and Susan Jones and Susan Mardis Allen and Susanne Kathrin Wasmus and Terry Ann Benczik and Thomas Charles Slade and Thomas Orban and Victoria L. Vannes and Victoria Margot Schlosser and Yusif Sarkis Yamin Albino and Parthasarathi Panda and Kalyan Kumar Sethi and Snehasis Jana},
      title = {Solid State Characterization of Withania somnifera (Ashwagandha) Root Extract After Treatment with Consciousness Energy Healing},
      journal = {Science Journal of Analytical Chemistry},
      volume = {5},
      number = {2},
      pages = {17-27},
      doi = {10.11648/j.sjac.20170502.11},
      url = {https://doi.org/10.11648/j.sjac.20170502.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.sjac.20170502.11},
      abstract = {Ashwagandha root extract is useful as an herbal medicine and nutraceuticals for the prevention and treatment of various diseases. The aim of the current study was to evaluate the influence of Consciousness Energy Healing Treatment (The Trivedi Effect®) on the physico-chemical, thermal and behavioral properties of ashwagandha root extract using powder X-ray diffraction (PXRD), particle size distribution analysis (PSD), Fourier transform infrared (FT-IR) spectrometry, UV-Vis spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Ashwagandha root extract was divided into two parts – one part was control without any Biofield Energy Treatment, and another part was treated with the Consciousness Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as Biofield Energy Treated sample. The PXRD analysis concluded that both the control and treated samples were amorphous in nature. The particle size values at d10, d50, and d90 of the treated sample were significantly decreased by 36.78%, 15.18%, and 5.06%, respectively compared with the control sample. Likewise, the surface area of the treated sample was significantly increased by 85.14% compared to the control sample. FT-IR results showed a small impact of Consciousness Energy Healing Treatment on the phytoconstituents of ashwagandha root extract to reduce the force constant of O-H (str.) bond. UV-vis analysis revealed that the wavelength for the maximum absorbance (λmax) of both the samples was at 206.4 in methanol. TGA revealed the three steps of thermal degradation and the total weight loss was decreased by 0.73% in the treated sample compared to the control sample. Consequently, the maximum thermal degradation temperature was found at 272.53°C and 393.35°C for two broad peaks in the treated sample was increased by 0.05% and 0.08%, respectively compared to the control the sample (272.67°C and 393.66°C). The DSC analysis indicated that the evaporation temperature and latent heat of vaporization were lowered significantly by 4.98% and 35.67%, respectively in the treated sample compared with the control sample. The current outcomes suggested that the Energy of Consciousness Healing Treatment might have the amazing capacity to enhance the solubility, dissolution, absorption, bioavailability and thermal stability of ashwagandha root extract in the various form of pharmaceutical and nutraceutical formulation by modifying its particle size and surface area. Thus, the Biofield Energy Treated ashwagandha root extract might provide better therapeutic response against inflammatory diseases, immunological disorders, sexual disorders, arthritis, stress, cancer, ageing, diabetes, and other chronic infections.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Solid State Characterization of Withania somnifera (Ashwagandha) Root Extract After Treatment with Consciousness Energy Healing
    AU  - Mahendra Kumar Trivedi
    AU  - Alice Branton
    AU  - Dahryn Trivedi
    AU  - Gopal Nayak
    AU  - William Dean Plikerd
    AU  - Peter L. Surguy
    AU  - Robert John Kock
    AU  - Rolando Baptista Piedad
    AU  - Russell Phillip Callas
    AU  - Sakina A. Ansari
    AU  - Sandra Lee Barrett
    AU  - Sara Friedman
    AU  - Steven Lee Christie
    AU  - Su-Mei Chen Liu
    AU  - Susan Elizabeth Starling
    AU  - Susan Jones
    AU  - Susan Mardis Allen
    AU  - Susanne Kathrin Wasmus
    AU  - Terry Ann Benczik
    AU  - Thomas Charles Slade
    AU  - Thomas Orban
    AU  - Victoria L. Vannes
    AU  - Victoria Margot Schlosser
    AU  - Yusif Sarkis Yamin Albino
    AU  - Parthasarathi Panda
    AU  - Kalyan Kumar Sethi
    AU  - Snehasis Jana
    Y1  - 2017/04/13
    PY  - 2017
    N1  - https://doi.org/10.11648/j.sjac.20170502.11
    DO  - 10.11648/j.sjac.20170502.11
    T2  - Science Journal of Analytical Chemistry
    JF  - Science Journal of Analytical Chemistry
    JO  - Science Journal of Analytical Chemistry
    SP  - 17
    EP  - 27
    PB  - Science Publishing Group
    SN  - 2376-8053
    UR  - https://doi.org/10.11648/j.sjac.20170502.11
    AB  - Ashwagandha root extract is useful as an herbal medicine and nutraceuticals for the prevention and treatment of various diseases. The aim of the current study was to evaluate the influence of Consciousness Energy Healing Treatment (The Trivedi Effect®) on the physico-chemical, thermal and behavioral properties of ashwagandha root extract using powder X-ray diffraction (PXRD), particle size distribution analysis (PSD), Fourier transform infrared (FT-IR) spectrometry, UV-Vis spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Ashwagandha root extract was divided into two parts – one part was control without any Biofield Energy Treatment, and another part was treated with the Consciousness Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as Biofield Energy Treated sample. The PXRD analysis concluded that both the control and treated samples were amorphous in nature. The particle size values at d10, d50, and d90 of the treated sample were significantly decreased by 36.78%, 15.18%, and 5.06%, respectively compared with the control sample. Likewise, the surface area of the treated sample was significantly increased by 85.14% compared to the control sample. FT-IR results showed a small impact of Consciousness Energy Healing Treatment on the phytoconstituents of ashwagandha root extract to reduce the force constant of O-H (str.) bond. UV-vis analysis revealed that the wavelength for the maximum absorbance (λmax) of both the samples was at 206.4 in methanol. TGA revealed the three steps of thermal degradation and the total weight loss was decreased by 0.73% in the treated sample compared to the control sample. Consequently, the maximum thermal degradation temperature was found at 272.53°C and 393.35°C for two broad peaks in the treated sample was increased by 0.05% and 0.08%, respectively compared to the control the sample (272.67°C and 393.66°C). The DSC analysis indicated that the evaporation temperature and latent heat of vaporization were lowered significantly by 4.98% and 35.67%, respectively in the treated sample compared with the control sample. The current outcomes suggested that the Energy of Consciousness Healing Treatment might have the amazing capacity to enhance the solubility, dissolution, absorption, bioavailability and thermal stability of ashwagandha root extract in the various form of pharmaceutical and nutraceutical formulation by modifying its particle size and surface area. Thus, the Biofield Energy Treated ashwagandha root extract might provide better therapeutic response against inflammatory diseases, immunological disorders, sexual disorders, arthritis, stress, cancer, ageing, diabetes, and other chronic infections.
    VL  - 5
    IS  - 2
    ER  - 

    Copy | Download

  • Sections