| Peer-Reviewed

Kinetic Parameters Survey for Manufacture of Pralidoxime

Received: 18 June 2015    Accepted: 29 June 2015    Published: 14 July 2015
Views:       Downloads:
Abstract

Chemical agents represent a serious threat to the modern world. Among them, they stand out nerve agents because of its high lethality and dangerousness. They are typically organophosphate compounds, which act by inhibiting acetylcholinesterase, a key enzyme in the transmission of nerve impulses process. There are several forms of treatment for organophosphate poisoning, and pralidoxime (2-PAM) is the drug most used as reactivator of acetylcholinesterase. In this work, we developed the first three steps for the synthesis of 2-PAM, with the objective of obtaining data to calculate the kinetic parameters of these steps. These parameters may be used for the manufacture of 2-PAM in semi-pilot scale. Through the studies conducted it has been found that the preparation of the oxime has very rapid kinetics.

Published in American Journal of Chemical Engineering (Volume 3, Issue 3)
DOI 10.11648/j.ajche.20150303.12
Page(s) 39-51
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Chemicals warfare agents, Organophosphates compounds, Acetylcholinesterase, Oximes, Pralidoxime

References
[1] R. T. Delfino, T. S. Ribeiro and J. D. Figueroa-Villar, “Organophosphorus compounds as chemical warfare agents: a review,” Journal of the Brazil Chemical Society, vol. 20, pp. 407-428, 2009.
[2] Brasil. Ministério do Exército, C3-40: Defesa contra ataques químicos, biológicos e nucleares, 1ª edição ed., Brasília: EGGCF, 1987.
[3] J. O. S. Giacoppo, W. E. A. Lima, K. Kamil, T. C. C. França, E. F. F. da Cunha and T. C. Ramalho, “Guerra Química: Perspectivas no Estudo de Reativadores da Enzima Acetilcolinesterase Inibida por Organofosforados,” Revista Virtual de Química, n. 6, pp. 653-670, 2013.
[4] Goodman-Gilman, As Bases Farmacológicas da Terapêutica, 11ª ed., Rio de Janeiro: McGraw-Hill Interamericana do Brasil, 2006.
[5] P. H. Raven and G. B. Johnson, Biology, 9th ed., McGraw-Hill, 2011.
[6] G. L. Patrick, A Introdution to Medicinal Chemistry, 2ª edição ed., Ed. Oxford, 2001.
[7] E. d. C. Petronilho, A. C. Pinto and J. D. F. Villar, “Acetilcolinesterase: alzheimer e guerra química,” Revista Militar de Ciência e Tecnologia, vol. XXVIII, pp. 3-14, 2011.
[8] D. d. R. Voris and L. Mayer, “Estudo de óleos essenciais terpenóides e fenilpropanóides como inibidores da acetilcolinesterase,” Rio de Janeiro, 2012.
[9] J. B. Domingos, E. Longhinotti, V. G. Machado and F. Nome, “A Química dos Ésteres de Fósforo,” Química Nova, vol. 26, pp. 475 - 753, 2003.
[10] R. S. Alvim, V. S. Vaiss, A. A. Leitão and I. B. Jr., “A Química Teórica a Serviço da Defesa Química: Degradação de Agentes Neurotóxicos em Superfícies de Óxido e Hidróxido de Magnésio,” Revista Virtual de Química, vol. 6, n. 3, pp. 687-723, 2014.
[11] E. C. Petronilho, “Síntese e avaliação de hidrazonas como inibidoras e reativadoras da acetilcolinesterase,” Rio de Janeiro, 2011.
[12] K. J. D. M. K. Kuka, “Structural Requeriments of Acetylcholinesterase Reactivators,” Mini-Reviews in Medicinal Chemistry, no. 6, pp. 269-277, 2006.
[13] J. D. Hoekman, M. Hite, A. Brunelle, J. Relethford e R. J. Ho, “Nasal Drug Delivery Device”. Patente US20140014104 A1, 3 Janeiro 2014.
[14] T. T. Marrs, R. L. Maynard and F. Sidell, Chemical Warfare Agents: Toxicology and Treatment, 2ª Edição ed., John Wiley & Sons Ltda., 2007.
[15] X.-P. Zhang, J. Liu, J.-X. Zhang, J.-H. Huang, C.-Z. Wan, C.-H. Li and X.-Z. You, “Synthesis and ferroeletric properties of platinum(II) complexes with chiral isoxazoline ligand,” Polyhedron, vol. 60, pp. 85-92, 2013.
[16] K. Musilek, J. Kucera, D. Jun, V. Dohnal, V. Opletalova and K. Kuca, “Monoquaternary pyridinium salts with modified side chain—synthesis and evaluation on model of tabun- and paraoxon-inhibited acetylcholinesterase,” Bioorganic & Medicinal Chemistry, vol. 16, n. 17, p. 8218–8223, 2008.
[17] J. Kaminski, K. Knutson and N. Bodor, “A convenient method of anion exchange in quaternary salts,” Tetrahedron, vol. 34, n. 19, pp. 2857-2859, 1978.
[18] O. Levenspiel, Chemical Reaction Enginnering, 3ª edição ed., John Wiley & Sons, 1998.
[19] L. D. Schmidt, The Enginnering of Chemical Reactions, New York: Oxford University Press, 1998.
[20] R. W. Missen, C. A. Mims and B. A. Saville, Introduction to Chemical Reaction Engineering and Kinetics, John Wiley & Sons, 1999.
[21] H. S. Fogler, Elements of Chemical Engineering, 4ª ed., Pearso Education, 2006.
[22] G. W. Castellan, Physical Chemistry, 3ª Edição ed., Addison-Wesley Publishing Company, Inc. , 1983.
[23] P. Atkins and J. d. Paula, Physical Chemistry, 9ª Edição ed., New York: W. H. Freeman and Company, 2010.
[24] H. Tominaga and M. Tamaki, Chemical Reactions and Reactor Design, New York: John Wiley & Sons, 1997.
[25] A. O. Fortuna, Técnicas Computacionais para Dinâmica dos Fluidos: Conceitos Básicos e Aplicações, São Paulo: Editora da Universidade de São Paulo, 2000.
[26] R. L. Burden and J. D. Faires, Análise Numérica, São Paulo: Thompson Learning, 2003.
[27] J. McMurry, Organic Chemistry, 7ª Edição ed., Brooks/Cole - Thomson Learning, Inc., 2008.
[28] J. March and M. B. Smith, March's Advanced Organic Chemistry, 6ª Edição ed., New Jersey: John Wiley & Sons, Inc., 2007.
[29] Sigma-Aldrich, “Material Safety Data Sheet,” 2012. [Online]. Available: http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=BR&language=pt&productNumber=131628&brand=ALDRICH&PageToGoToURL=http%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fsearch%3Finterface%3DAll%26term%3Daldoxime%2520pyridine%26N%3D0%26focus%3Dproduc. [Acesso em 01 04 2014].
[30] R. Janicki, “Synthesis, crystal structure and spectral properties of diammonium dihydrogen N-(methylene-2-pyridine)-N,N,-di-(methylenephosphonate),” Journal of Molecular Structure, n. 1036, pp. 35-41, 2013.
Cite This Article
  • APA Style

    Daniel Antonio Shimizu Kitagawa, Sabrina Teixeira Martinez, Erick Braga Ferrao Galante, Tanos Celmar Costa Franca. (2015). Kinetic Parameters Survey for Manufacture of Pralidoxime. American Journal of Chemical Engineering, 3(3), 39-51. https://doi.org/10.11648/j.ajche.20150303.12

    Copy | Download

    ACS Style

    Daniel Antonio Shimizu Kitagawa; Sabrina Teixeira Martinez; Erick Braga Ferrao Galante; Tanos Celmar Costa Franca. Kinetic Parameters Survey for Manufacture of Pralidoxime. Am. J. Chem. Eng. 2015, 3(3), 39-51. doi: 10.11648/j.ajche.20150303.12

    Copy | Download

    AMA Style

    Daniel Antonio Shimizu Kitagawa, Sabrina Teixeira Martinez, Erick Braga Ferrao Galante, Tanos Celmar Costa Franca. Kinetic Parameters Survey for Manufacture of Pralidoxime. Am J Chem Eng. 2015;3(3):39-51. doi: 10.11648/j.ajche.20150303.12

    Copy | Download

  • @article{10.11648/j.ajche.20150303.12,
      author = {Daniel Antonio Shimizu Kitagawa and Sabrina Teixeira Martinez and Erick Braga Ferrao Galante and Tanos Celmar Costa Franca},
      title = {Kinetic Parameters Survey for Manufacture of Pralidoxime},
      journal = {American Journal of Chemical Engineering},
      volume = {3},
      number = {3},
      pages = {39-51},
      doi = {10.11648/j.ajche.20150303.12},
      url = {https://doi.org/10.11648/j.ajche.20150303.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajche.20150303.12},
      abstract = {Chemical agents represent a serious threat to the modern world. Among them, they stand out nerve agents because of its high lethality and dangerousness. They are typically organophosphate compounds, which act by inhibiting acetylcholinesterase, a key enzyme in the transmission of nerve impulses process. There are several forms of treatment for organophosphate poisoning, and pralidoxime (2-PAM) is the drug most used as reactivator of acetylcholinesterase. In this work, we developed the first three steps for the synthesis of 2-PAM, with the objective of obtaining data to calculate the kinetic parameters of these steps. These parameters may be used for the manufacture of 2-PAM in semi-pilot scale. Through the studies conducted it has been found that the preparation of the oxime has very rapid kinetics.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Kinetic Parameters Survey for Manufacture of Pralidoxime
    AU  - Daniel Antonio Shimizu Kitagawa
    AU  - Sabrina Teixeira Martinez
    AU  - Erick Braga Ferrao Galante
    AU  - Tanos Celmar Costa Franca
    Y1  - 2015/07/14
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ajche.20150303.12
    DO  - 10.11648/j.ajche.20150303.12
    T2  - American Journal of Chemical Engineering
    JF  - American Journal of Chemical Engineering
    JO  - American Journal of Chemical Engineering
    SP  - 39
    EP  - 51
    PB  - Science Publishing Group
    SN  - 2330-8613
    UR  - https://doi.org/10.11648/j.ajche.20150303.12
    AB  - Chemical agents represent a serious threat to the modern world. Among them, they stand out nerve agents because of its high lethality and dangerousness. They are typically organophosphate compounds, which act by inhibiting acetylcholinesterase, a key enzyme in the transmission of nerve impulses process. There are several forms of treatment for organophosphate poisoning, and pralidoxime (2-PAM) is the drug most used as reactivator of acetylcholinesterase. In this work, we developed the first three steps for the synthesis of 2-PAM, with the objective of obtaining data to calculate the kinetic parameters of these steps. These parameters may be used for the manufacture of 2-PAM in semi-pilot scale. Through the studies conducted it has been found that the preparation of the oxime has very rapid kinetics.
    VL  - 3
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Division of Chemical, Biological and Nuclear Defense, Technological Centre of Army, CTEx, Rio de Janeiro, Brazil

  • Chemical Engineering Department, Military Institute of Engineering, IME, Rio de Janeiro, Brazil; Organic Chemistry Department, Chemical Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil

  • Chemical Engineering Department, Military Institute of Engineering, IME, Rio de Janeiro, Brazil

  • Chemical Engineering Department, Military Institute of Engineering, IME, Rio de Janeiro, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic

  • Sections