Optimum Immobilization of Candida Antartica B Lipase on Natural Silica by RSM
American Journal of Chemical Engineering
Volume 5, Issue 3, May 2017, Pages: 43-48
Received: Feb. 22, 2017; Accepted: Mar. 30, 2017; Published: May 23, 2017
Views 2003      Downloads 69
Authors
Djossou Andriano Jospin, Unit of Research in Enzymatic and Food Engineering (URGEA), Polytechnic School of Abomey-Calavi (EPAC), Cotonou, Bénin
Mazou Mouaïmine, Unit of Research in Enzymatic and Food Engineering (URGEA), Polytechnic School of Abomey-Calavi (EPAC), Cotonou, Bénin
Tchobo Fidèle Paul, Unit of Research in Enzymatic and Food Engineering (URGEA), Polytechnic School of Abomey-Calavi (EPAC), Cotonou, Bénin
Toukourou Akanho Chakirou, Laboratory of Energy and Applied Mechanics (LEMA), Polytechnic School of Abomey-Calavi (EPAC), Cotonou, Bénin
Blin Joel, Mixed Unit of Research Engineering of Agropolymères and Emergent Technologies, (UMRIATE / CIRAD), Montpellier, France
Yao Kouassi Benjamin, Laboratory of Industrial Processes, of Synthesis, of Environment and New Energies, Yamoussoukro, Côte d’Ivoire
Soumanou Mansourou Mohamed, Unit of Research in Enzymatic and Food Engineering (URGEA), Polytechnic School of Abomey-Calavi (EPAC), Cotonou, Bénin
Article Tools
Follow on us
Abstract
The immobilization of the lipase of Candida antartica B (LCAB) by adsorption on a natural silica support carried out to develop the adsorbent local supports. Immobilization conditions and characterization of the immobilized enzyme were investigated. Response surface methodology (RSM) and 3-level–3-factor fractional factorial design were employed to evaluate the effects of immobilization parameters, such as immobilization time (5-25 hour), immobilization temperature (25-45°C), and enzyme/support ratio (0.1-0.5, w/w), on yield of lipase immobilization on the support. The optimum immobilization conditions were as follows: immobilization time 18 hours, immobilization temperature 20°C, and enzyme / support ratio 0.5 (w/w); with a yield immobilization of 56,13 mg / g. The immobilization lipase shows hydrolytic and synthesis satisfactory activity.
Keywords
Immobilization, Lipase, Natural Silica Support, RSM
To cite this article
Djossou Andriano Jospin, Mazou Mouaïmine, Tchobo Fidèle Paul, Toukourou Akanho Chakirou, Blin Joel, Yao Kouassi Benjamin, Soumanou Mansourou Mohamed, Optimum Immobilization of Candida Antartica B Lipase on Natural Silica by RSM, American Journal of Chemical Engineering. Vol. 5, No. 3, 2017, pp. 43-48. doi: 10.11648/j.ajche.20170503.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
C. C. Akoh, S. Chang, G. Lee G, J. Shaw. “Enzymatic approach to biodiesel production”, Agric Food Chem, (2007) 55: 8995-9005.
[2]
S. K. Narwal, R. Gupta, “Biodiesel production by transesterification using immobilized lipase”, Biotechnol Lett, 35, (2013), 479-490.
[3]
R. Richard. “Transestérification éthanolique d'huile végétale dans des microréacteurs: transposition du batch au continu ”, Thèse doctorale (2011), Université de Toulouse.
[4]
R. R. de Souza, R. D. M. Ferreira, “Immobilization of Lipase from Candida rugosa on Mesoporous MCM 41”, Journal of Biosciences and Medicines, 2 (2014), 69-73.
[5]
W. Kaewthong, S. Sarote, P. Poonsuk, H. Aran, “Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase”, Process Biochem, 40 (2005), 1525-1530.
[6]
S. K. Khare, M. Nakajima, “Immobilization of Rhizopus japonicus lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil”, Food Chem, 68 (2000), 153-157.
[7]
P. C. Oliveira, G. M Alves, H. F. Castro, “Immobilisation studies and catalytic properties of microbial lipase onto styrene-divinylbenzene copolymer”, Biochem. Eng. J. 5 (2000), 63–71.
[8]
M. Person, E. Wehtje, P. Adlercreutz, “Immobilisation of lipases by adsorption and deposition: high protein loading gives lower water activity optimum”, Biotechnol Lett. 22 (2000), 1571–1575.
[9]
C. M. F. Soares, H. F. Castro, F. F. Moraes, G. M. Zanin, “Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica”, Appl. Biochem. Biotechnol. 77 (1999), 745-757.
[10]
M. Miranda, M. L. C. P. Silva, H. F. de Castro “Optimised immobilisation of microbial lipase on hydrous niobium oxide”, J. Chem. Technol. Biotechnol, 81 (2006), 566-572.
[11]
C. M. F. Soares, O. A Santos, J. E. Olivo, H. F. Castro, F. F. Moraes, G. M. Zanin, “Influence of the alkyl-substituted silane precursor on sol–gel encapsulated lipase activity”, J. Mol. Catal. B: Enzym. 29 (2004), 69-79.
[12]
M. T. Reetz, “Lipases as practical biocatalysts”, Curr. Opin. Chem. Biol. 6 (2002), 145-150.
[13]
W. A. M. Alloue, M. Agouedo, J. Destain, H. Ghalft, C. Blecker, J-P. Wathelet, P. Thonart, “Les lipases immobilisées et leurs applications “, Biotechnol. Agron. Soc. Environ, 12 (2008), 57-68.
[14]
P. C. M. Da Rós, G. A. M. Silva, A. A. Mendes, J. C. Santos, H. F. de Castro, “Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks”, Bioresource Technology, 101 (2010), 5508–5516.
[15]
X. Zou, C. F. Chen, H. F. Hang, J. Chu, Y. P. Zhuang, S. L. Zhang, “Response Surface Methodology for optimization of the erythromycin production by fed-batch fermentation using an inexpensive biological nitrogen source”, Chem. Biochem. Eng, 24 (2010), 95-100.
[16]
S. F Cheng, S. W. Chang, Y. H. Yen, C. J. Hsieh, “Optimum immobilization of Candida rugosa lipase on Celite by RSM”, Applied Clay Science, 37 (2007), 67-73.
[17]
R. E Wrolstad, “Anthocyanins”, In F. J. Francis, G. J. Lauro, Eds. New York: Natural Food Colorants, (2000), 237-252.
[18]
R. Bovara, G. O. Carrea, G. Ottolina, S. Riva, “Effects of water activity on Vmax and Km of lipase catalyzed transesterification in organic media”, Biotechnology Letters, 15(1993): 937-942.
[19]
H. Ghamgui, N. Miled, M. Karra-chaabouni, Y. Gargouri, “Immobilization studies and biochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3: A comparative study”, Biochemical Engineering Journal, 37 (2007), 34-41.
[20]
A. Hiol, M. D. Jonzo, N. Rugani, D. Druet, L. Sarda, L. C. Comeau, “Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit”, Enzyme Microb. Technol, 26 (2000), 421-430.
[21]
S. Montero, A. Blanco, M. D. Virto, L. C. Landeta, I. Agud, R. Solozabal, ”Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme”, Enzyme Microb. Technol, 15 (1993) 239-247.
[22]
Y. Gao, T. Tian-Wei, N. F. Kai-Li, “Wang Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media”, Chin J Biotech, 22 (2006), 114-118.
[23]
C. Calgaroto, R. P. Scherer, S. Calgaroto, J. V. Oliveira, D. de Oliveira, S. B. C. Pergher “Immobilization of porcine pancreatic lipase in zeolite MCM 22 with different Si/Al ratios”,Applied Catalysis A: General 394, (2011) 101–104.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186