On ve-Degree and ev-Degree Zagreb Indices of Titania Nanotubes
American Journal of Chemical Engineering
Volume 5, Issue 6, November 2017, Pages: 163-168
Received: Jul. 18, 2017; Accepted: Oct. 13, 2017; Published: Nov. 30, 2017
Views 1375      Downloads 50
Murat Cancan, Department of Mathematics, Faculty of Education, Van Yüzüncü Yıl University, Van, Turkey
Mehmet Şerif Aldemir, Department of Mathematics, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
Article Tools
Follow on us
Titania nanotubes are among the most investigated nanomaterials relating to their common applications in the manufacturing of corrosion-resistant, gas sensing and catalytic molecules. Topological indices which are graph invariants derived from molecular graphs of molecules are used in QSPR researches for modelling physicochemical properties of molecules. Topological indices are important tools for determining the underlying topology of a molecule in view of theoretical chemistry. Most of the topological indices are defined by using classical degree concept of graph theory. Recently two novel degree concepts have been defined in graph theory: ve-degrees and ev-degrees. By using both novel graph invariants, as parallel to their classical degree versions, the ev-degree Zagreb index, the ve-degree Zagreb indices and the ve-degree Randić index have been defined very recently. In this study the ev-degree Zagreb index, the ve-degree Zagreb indices and the ve-degree Randić index of titania nanotubes were computed.
ev-Degree Zagreb Index, ve-Degree Randić Index, ve-Degree Zagreb Indices, QSPR Researches, Titania Nanotubes
To cite this article
Murat Cancan, Mehmet Şerif Aldemir, On ve-Degree and ev-Degree Zagreb Indices of Titania Nanotubes, American Journal of Chemical Engineering. Vol. 5, No. 6, 2017, pp. 163-168. doi: 10.11648/j.ajche.20170506.18
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20.
Platt, J. R. Influence of neighbour bonds on additive bond properties in paraffins. J. Chem. Phys. 1947, 15, 419-420.
Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 1971, 17, 535-538.
Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615.
Gutman, I. Degree-Based topological indices. Croat. Chem. Acta 2013, 86, 315–361.
Garcia, I.; Fall, Y.; Gomez, G. Using topological indices to predict anti-alzheimer and anti-parasitic GSK-3 inhibitors by multi-target QSAR in silico screening. Molecules 2010, 15, 5408–5422.
Furtula, B.; Gutman, I.; Dehmer, M. On structure-sensitivity of degree based topological indices. Appl. Math. Comput. 2013, 219, 8973–8978.
Hao, J. Theorems about Zagreb Indices and Modified Zagreb Indices. MATCH Commun. Math. Comput. Chem. 2011, 65, 659–670.
Li, X.; Shi, Y. A Survey on the Randic Index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156.
Xu, K.; Liu, M.; Das, K. C.; Gutman, I.; Furtula, B. A survey on graphs extremal with respect to distance-based topological indices. MATCH Commun. Math. Comput. Chem. 2014, 71, 461–508.
Klavzar, S.; Deutsch, E. M-Polynomial and Degree-Based Topological Indices. Iran. J. Math. Chem. 2015, 6, 93–102.
Li, X.; Gutman, I. Mathematical Aspects of Randic-Type Molecular Structure Descriptors; Mathematical Chemistry Monographs, No. 1; University of Kragujevac: Kragujevac, Serbia, 2006.
Dobrynin, A. A.; Entringer, R.; Gutman, I. Wiener index of trees: Theory and applications. Acta Appl. Math. 2001, 66, 211–249.
Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure-Activity Analysis; John Wiley & Sons: New York, NY, USA, 1986.
Gutman, I.; Das, K. C. The first Zagreb indices 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83–92.
Li, Y. Z.; Lee, N. H.; Lee, E. G.; Song, J. S.; Kim, S. J. The characterization and photocatalytic properties of mesoporous rutile TiO2 powder synthesized through cell assembly of nanocrystals. Chem. Phys. Lett. 2004, 389, 124–128.
Bavykin, D. V.; Friedrich, J. M.; Walash, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties and applications. Adv. Mater. 2006, 18, 2807–2824. Wang, W.; Varghese, O. K.; Paulsose, M.; Grimes, C. A. A study on the growth and structure of Titania nanotubes. J. Mater. Res. 2004, 19, 417–422.
Evarestov, R. A.; Bandura, A. V.; Losev, M. V.; Piskunov, S.; Zhukovskii, Y. F. Titania nanotubes modeled from 3-layered and 6-layered(101) anatase sheets: Line group symmetry and comparative ab initio LCAO calculataions. Phys. E 2010, 43, 266–278.
Evarestoy, R. A.; Zhukovskii, Y. F.; Bandura, A. V.; Piskunov, S. Symmetry and models of single-walled TiO2 Nanotubes with rectangular morphology. Cent Eur J Phys 2011; 9(2): 492-501.
Malik, M. A.; Imran, M. On multiple Zagreb indices of TiO2 Nanotubes. Acta Chim Slov, 2015; 62, 973-976.
Gao, W; Farahani, M. R.; Jamil, M. K.; Siddiqui, M. K. The Redefined First, Second and Third Zagreb Indices of Titania Nanotubes TiO2 [m, n], The Open Biotechnology Journal, 2016, 10, 272-277.
Farahani, M. R.; Jamil, M. K.; Imran, M. Vertex PIv topological index of Titania Nanotubes. Appl Math Nonlinear Sci, 2016, 1, 170-175.
Farahani, M. R.; Kumar, R. P.; Kanna, M. R.; Wang, S. The Vertex Szeged Index of Titania Carbon Nanotubes TiO2 (m, n). Int J Pharm Sci Res, 2016; 7, 3734-3741.
Farahani, M. R.; Kanna, M. R; Kumar, R. P.; Jamil, M. K. Computing Edge Co-Padmakar-Ivan Index of Titania TiO2 (m, n). Journal of Environmental Science, Computer Science and Engineering & Technology, 2016, 5, 285-295.
Gao, W.; Farahani, M. R.; Jamil, M. K.; Siddiqui, M. K. The Redefined First, Second and Third Zagreb Indices of TitaniaNanotubes TiO2 [m, n], The Open Biotechnology Journal, 2016, 10, 272-277.
Munir, M.; Nazeer, W.; Nizami, A. R.; Rafique, S.; Kang, S. M. M-Polynomials and Topological Indices of Titania Nanotubes, Symmetry, 2016, 8, 117.
Li, Y.; Farahani, M. R.; Jamil, M. K.. The Edge-Szeged index of the Titania Nanotubes TiO2 (m, n). International Journal of Biology, Pharmacy and Allied Sciences, 2016, 5, 1260-1269.
Nadeem, I.; Shaker, H. On Eccentric Connectivity Index of TiO2 Nanotubes, Acta Chim. Slov. 2016, 63, 363–368.
Liu, J. B.; Gao, W.; Siddiqui, M. K.; Farahani, M. R. Computing three topological indices for Titania nanotubes TiO2 [m, n], AKCE International Journal of Graphs and Combinatorics 2016, 13, 255-260.
Chellali, M.; Haynes, T. W.; Hedetniemi, S. T.; Lewis, T. M. On ve-degrees and ev-degrees in graphs, Discrete Mathematics, 2017, 340, 31-38.
Ediz, S,; Predicting some physicochemical properties of octane isomers: A topological approach using ev-degree and ve-degree Zagreb indices, International Journal of Systems Science and Applied Mathematics 2017; 2(5): 87-92.
Ediz, S,; On ve-degree molecular topological properties of silicate and oxygen networks, International Journal of Computing Science and Mathematics (in press).
Ediz, S,; A New Tool for QSPR Researches: ev-degree Randić Index, Celal Bayar University Journal of Science 2017, 13(3), 615-618.
Şahin, B.; Ediz, S. On ev-degree and ve-degree topological indices. Iranian J. Math. Chem. (in press).
Science Publishing Group
NEW YORK, NY 10018
Tel: (001)347-688-8931