Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes
American Journal of Chemical Engineering
Volume 6, Issue 4, July 2018, Pages: 49-53
Received: May 15, 2018; Accepted: Jun. 8, 2018; Published: Jul. 27, 2018
Views 391      Downloads 25
Authors
Azita Saliman, Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
Hamid Reza Aghabozorg, Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran; Research Institute of Petroleum Industry (RIPI), Tehran, Iran
Sepideh Ketabi, Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
Article Tools
Follow on us
Abstract
In this research study for the firsttime zirconium doped vanadium oxide nanotubes (VONTs) were synthesized. Zr-doped VONTs were performed by using hydrothermal method. Zr-VONTs prepared 0.02 wt%. The structure and morphology of the nanotubes were investigated by x- ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In contrast to the undoped VONTs, the interlayer distance between oxide layers in the (V0.98Zr0.02 ) x ONTs increases owing to replacement of some V in nanotubes by Zr with a large ionic radius. The results showed that zirconium 0.02wt% doped VONTs complately and the doping Zr into VONTs leads to increasing interlayer distances.
Keywords
Vanadium Oxide Nanotubes (VONTs), Zirconium (Zr), Hydrothermal, Doped
To cite this article
Azita Saliman, Hamid Reza Aghabozorg, Sepideh Ketabi, Synthesis and Characterization of Zr-Doped Vanadium Oxide Nanotubes, American Journal of Chemical Engineering. Vol. 6, No. 4, 2018, pp. 49-53. doi: 10.11648/j.ajche.20180604.12
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
R. Rouhani, H. R. Aghabozorg, and M. A. Asad Ababdada, synthesis and characterization of Re-, MO-, and W- doped vanadium oxide nanotubes, taylor & francis Groups, LLC, 1018- 1021, 2011.
[2]
R. Tenne, L, Margulis, M. Genut, G. modes, Nature 1992, 360, 444.
[3]
Y. Feldman, E. wasserman, D. j. Srolouitz, R. Tenne, Science 1995, 267, 222.
[4]
N. G. chopra, R. G. Luyken, K. cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl, science 1995, 256, 966.
[5]
H. Nakamura, Y. Matsui, L. Am. Chem, Sock. 1995, 117, 2651.
[6]
P. Hoyer, Langmuir 1996, 12, 1411.
[7]
M. E. Spah, P. Bitterli, R. Nesper, m. Muller, F. krumeich, H. U. Niessen, Angw Chem. Ent. Ed. 1998, 37, 1263; Angew. Chem. 1998, 110, 1339.
[8]
Y. R. Hacahan, E. Grunbaum, R. Tenne, J. Sloan, J. L. Hutchison, nature 1998, 395, 337.
[9]
D. H. Galvan, J. H. Kim, M. B. Maple, M. Avalos – Berja, E. Adem, Full erene Sci, Technol, 2000, 8, 143.
[10]
A. L. Ivanovskii, Russ. chem. Rev. 2002, 71, 175.
[11]
M. Brorson, T. W. Hansen, C. J. H. Jacobesn, J. Am. chem. Soc. 2002, 124, 11582.
[12]
M. E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, H. U. Nissen, Angew. Chem., Int. Ed. 37 (1998) 1263.
[13]
M. Niederberg, H. J. Muher, F. Krmeich, F. Bieri, D. Gunther, R. Nesper, Chem. Mater. 12 (2000) 1995.
[14]
F. Bieri, F. Krumeich, H. J. Muher, R. Nesper, Helv. Chim. Acta 84 (2001) 3015.
[15]
Grigoreva, A. V, Anikina, A. V, Tarasor, A. B, sudilin, E. A, knotko, A. V, Volkov, V. V, Dembo, K. A, Tretyakov, Y. D. micromere apology and structure of vanadium oxide nanotubes. Doklady chem, 2006, Ulo, 165-169.
[16]
Li,. Zheng, L., zhang, K. F. Feng, X. Q, SU, Z. X. Ma, J. T Synthesis of Ag modified vanadium oxide nanotubes and their antibacterial properties. Mater, Res. Bull. 2008, 43, 2810 -2817.
[17]
G. T. Chandrappa, No Steunous, S. Cassaignon, C. bauvais, J. Livage, Hydrothermal Synthesis of vanadium oxide nanotubes from v2 o5 gels, J of catalysis today 78 (2003) 85-89.
[18]
Solsona B et al (2001) Vanadium oxide supported on mesoporous MCM-41 as selsctive catalysts in the oxidative dehydrogenation of alkanes. J Catal 203 (2):443-452.
[19]
Muhr HJ, Krumeich FSchonholzer UP, Bieri F, Niederberger M, Gaukler LJ, Nesper R (2000) Adv Mater12:231.
[20]
Zhang KF, Guo DJ, Liu X, Li, J, Li HL, Su ZX (2006) J Power sources 162: 1077.
[21]
Spahr ME, Stoschitzki-Bitterli P, Nesper R, Haas O, Novak P (1999) JElectrochem Soc146:278064-767.
[22]
Krumeich F, Muhr HJ, Niederberger M, Bieri F, Schnyder B Nesper R (1999) J Am chem Soc 121:8324.
[23]
Ledoux MJ et al (2001) High – yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat conductive materials: β-Sic, Si3N4, and BN, J Catal 203 (2): 495-508.
[24]
Minglan Yu, Xueqin Liu, QingSu, Gas sensing of vanadium oxide nanotubes (2012), J of applied surface science 9554-9558.
[25]
J. Liu, X. Wang, Q, Peng, Y. Li, Sensors and Actuators B: Chemical 115 (2006) 481-487.
[26]
J. Liu, X. Wang, Q. Peng. Y Liu, Advanced Materials 17 (2005) 765-767.
[27]
C. Leroy, M. Achard, O. Babot, N. Steunou, P. Masse, J. Livage, L. Binet. N. B run, R. Backov, chemistry of Materials 19 (2007) 3988-3999.
[28]
Y. Li, Z. Hung, S. Rong, Sens, Mater 18 (2008) 241-249.
[29]
A. Gigorieva, A. Tarasv, E, Godillin, S. Badalyan, M. Rumyantseva, A. Gaskov, A. Bikner, Y. Tretyakov, Mendeleev communications 18 (2008) 6-7.
[30]
M. Kanttcheva, Physical Chemistry Chemical Physics 2 (2000) 3-43-3048.
[31]
Qing Su, Xueqin Liu, Applied Surface Scince, 258 (2012) 9554-9558.
[32]
MartinE. Saleta, Javier currale, H. E. Troiani, S. R. Guevara, R. Sanchez, M. Malta, R. Torresi, in Flounce of Nidopin on vanadium oxide hexadecyl amine multiwall nanotube, science direct (2007) 333-336.
[33]
li. F, wang, X, shao, C, Tan, R; liu, Y. W doped vanadium oxide nanotubes synthesis and characterization. Matter let, 2007, 61, 1328-1332.
[34]
Mai, L. Q; chen, W; Xu, Q; peng, J. F, Zhu, Q. Y. Mo doped vanadium oxide nanotubes: microstructure and electrochemistry chem. Phys. Let 2003, 382, 307-312.
[35]
Jiao, L. Yuan, H.; Wing, y.; Cao, J; Wang, y. Mg intercalation properties in Open – ended Vanadium oxide nanotubes Electro hem. Common. 2005, 7 (4), 431- 436.
[36]
Li. Mai, wen chen, Q. XV, J. Feng pen. Q – yaoZhu, Mo doped vanadium oxide nanotubes: micro structure and electro chemistry, chemical physics letters 382 (2003) 307-317.
[37]
Bicrif, Krumeich F, muh. HJ, Nesper R (2001) Heluchain Acta 84. 3015.
[38]
L. Guo, J. zho, X. wang, x. xu, H. liu, and Y. li, structure and bioactivity of ziroconia, applied ceramic technology, 636- 641 (2009).
[39]
Bouhedja L, Stenou N, Maquet J, Livage J (2001) J Solid State Chem162:315.
[40]
J. cha, Y. J. Kim, T. J. Kim, chemo. mater. 13 (2001) 18.
[41]
J. cho, Y. J. Kim, B. Park, J. Electro hem. Solid State 4 (2001) A159.
[42]
Ehsan. kianfar. M. Baghernejad, Y. Rahimdashti, J of Biological forum7 (1):1671-1685 (2015).
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931