FDTD Simulations of Surface Plasmons Using the Effective Permittivity Applied to the Dispersive Media
American Journal of Electromagnetics and Applications
Volume 5, Issue 2, November 2017, Pages: 14-19
Received: Aug. 11, 2017; Accepted: Aug. 29, 2017; Published: Oct. 11, 2017
Views 1252      Downloads 155
Authors
Otman Sofiane, Physics Department, Faculty of Science Ben M’Sik, Hassan II University, Casablanca, Morocco
Said Ouaskit, Physics Department, Faculty of Science Ben M’Sik, Hassan II University, Casablanca, Morocco
Article Tools
Follow on us
Abstract
This paper presents the analysis of electromagnetic fields in random metallic materials for plasmonics applications. In this context, the two-dimensional finite- difference time-domain (2D-FDTD) method is used to simulate the surface Plasmons (SPs), with the perfectly matched layer (PML). To solve the problem, the idea of effective permittivity for the curved surface is applied to the dispersive media, while the Z-transform method is applied to the Drude model. The numerical results obtained by 2D -FDTD for circular silver cylinders are given and discussed.
Keywords
FDTD, Surface Plasmon, Effective Permittivity, Dispersive Media, Z-Transform
To cite this article
Otman Sofiane, Said Ouaskit, FDTD Simulations of Surface Plasmons Using the Effective Permittivity Applied to the Dispersive Media, American Journal of Electromagnetics and Applications. Vol. 5, No. 2, 2017, pp. 14-19. doi: 10.11648/j.ajea.20170502.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Sarid, D.; Challener, W. Modern Introduction to Surface Plasmons theory mathematica modeling and applications; Cambridge University Press, 2010.
[2]
Rivera, V. A. G.; Silva, O. B.; Ledemi, Y.; Messaddeq, Y.; Marega, E. Collective Plasmon-Modes in Gain Media Quantum Emitters and Plasmonic Nanostructures; Springer, 2015.
[3]
Homola, J. Surface Plasmon Resonance Based Sensors; Springer, 2006; 04.
[4]
Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum; Phil, Mag, 1902; 4, 396.
[5]
Fano, U. Atomic Theory of electromagnetic interactions in dense materials; Physical Review 1956. 103, 1202.
[6]
R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm. Surface-plasmon resonance effect in grating diffraction; Physical Review letters 1968. 21, 1530-1532.
[7]
Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection; Z. Phys 1968. 216, 398.
[8]
Kretschmann, E.; Raether, H. Radiative decay of nonradiative surface plasmons excited by light; Z. Naturforsch 1968. 23A, 2135.
[9]
W. A. Challener, I. K. Sendur; C. Peng. Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials; optics express 2003. Vol. 11, No. 23, 3160-3170.
[10]
Chris D. Geddes. Reviews in plasmonics 2015; Springer International Publishing Switzerland 2016.
[11]
Chris D. Geddes. Surface Plasmon Enhanced, Coupled and Controlled Fluorescence; John Wiley & Sons, Inc 2017.
[12]
Mark, L. Brongersma; Pieter, G. Kik. Surface Plasmon Nanophotonics; Springer, 2007.
[13]
Tigran, V. Shahbazyan; Mark, I. Stockman. Plasmonics Theory and Applications; Springer, 2013.
[14]
Stefan, A. Maier. Plasmonics Fundamentals and Applications; Springer, 2007.
[15]
Nico, J. de Mol; Marcel, J. E. Fischer. Surface Plasmon Resonance Methods and Protocol; Humana Press, 2010.
[16]
Ahmed, I.; E. H. Khoo; O. Kurniawan; E. P. Li. Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model. Optical Society of America B, Vol. 28, 2011, pp. 352–359.
[17]
Yee, K. S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media; IEEE Trans. Antennas Propagat. 1966, AP-14, 302–307.
[18]
Taflove, A.; Hagness, S. C. Computational Electrodynamics The Finite-Difference Time-Domain Method, 3rd ed.; Artech House, 2005.
[19]
Kunz, K. S.; Luebbers, R. J. The Finite Difference Time Domain Method for Electromagnetics; CRC Press, Boca Raton, 1993.
[20]
Sullivan, D. M. Electromagnetic Simulation Using the FDTD Method; New York, IEEE Press, 2000.
[21]
Umran, S. Inan; Robert A. Marshall. Numerical Electromagnetics The FDTD Method; Cambridge University Press, 2011.
[22]
Ramesh Garg. Analytical and Computational Methods in Electromagnetics; Artech House, 2008.
[23]
Berenger, J. R. A perfectly matched layer for the absorption of electromagnetic waves; J. Computat. Phys. 1994, 114, 185-200.
[24]
Zhao, Y.; Hao, Y. Finite-difference time-domain study of guided modes in nano-plasmonic waveguides; IEEE Trans. Antennas Propag. 2007, 55, 3070–3077.
[25]
Zhao, Y.; Hao, Y. Conformal Dispersive Finite-Difference Time-Domain Simulations of Plasmonic Waveguides; IEICE 2007, 224-227.
[26]
Mohammadi, A.; Jalali, T.; Agio, M. Dispersive contour-path algorithm for the two-dimensional finite difference time-domain method; Optics Express 2008, 16, 7397-7406.
[27]
Okada, N.; Cole, J. B. Effective permittivity for FDTD calculation of plasmonic materials; Micromachines 2012, 3, 168–179.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186