Compact MMW-band Planar Diffraction Type Antennas for Various Applications
American Journal of Electromagnetics and Applications
Volume 8, Issue 1, June 2020, Pages: 18-27
Received: Feb. 5, 2020; Accepted: Feb. 19, 2020; Published: Feb. 28, 2020
Views 317      Downloads 71
Authors
Yuriy Sydorenko, Department of Radiointroscopy, O. Ya. Usikov Institute of Radiophysics and Electronics National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Sergiy Provalov, Department of Radiointroscopy, O. Ya. Usikov Institute of Radiophysics and Electronics National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Sergiy Shylo, Department of Radiointroscopy, O. Ya. Usikov Institute of Radiophysics and Electronics National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Dana Wheeler, Plymouth Rock Technologies, Plymouth, The United States
Article Tools
Follow on us
Abstract
The principles of formation of antennas of diffraction radiation with flat surface in the millimeter wave radio band are considered. Such kinds of antennas are based on the effect of the conversion of volumetric electromagnetic waves into surface waves of a dielectric waveguide in an open electrodynamic structure. A brief description of the theoretical basis for the calculations and examples of the technical implementation of flat (2D) antennas of diffraction radiation in the W-band and Ka-band are presented; their parameters and areas of possible use are discussed. In the E-plane angle-to-frequency dependence of beam position is realized with coefficient near 0,9/1% of frequency change. That makes it possible effective control of beam position in space (beam scanning along 1, or even along 2 axes). There was estimated that total active loss in such kind antennas is related to dielectric losses in the material of planar dielectric waveguide and to active losses at the elements of internal waveguide transitions in the ratio near (2: 1). Losses of first kind may be reduced due to implementation of novel dielectric materials providing the smallest dielectric loss (near as for the PTFE material) and appropriate mechanical rigidity at the same time. Active losses of the second kind may be reduced due to implementation of transitions on the base of super-size waveguides.
Keywords
Physical Theory of Diffraction, Millimeter Wave Technology, Antenna of Diffraction Radiation, Leaky-wave Antenna
To cite this article
Yuriy Sydorenko, Sergiy Provalov, Sergiy Shylo, Dana Wheeler, Compact MMW-band Planar Diffraction Type Antennas for Various Applications, American Journal of Electromagnetics and Applications. Vol. 8, No. 1, 2020, pp. 18-27. doi: 10.11648/j.ajea.20200801.13
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
F. J. Zucker, Surface- and Leaky-Wave Antennas, Chap. 16, in H. Jasik (ed.), Antenna Engineering Handbook, 1st Ed. (New York: McGraw-Hill, 1961).
[2]
T. Tamir, Leaky-Wave Antennas, Chap. 20, in R. E. Collin and F. J. Zucker (eds.), Antenna Theory, Part II (New York: McGraw-Hill, 1969).
[3]
L. O. Goldstone and A. A. Oliner, “Leaky-Wave Antennas—Part I: Rectangular Waveguides,” IRE Trans. Antennas Propagat., vol. AP-7 (October 1959): pp. 307–319.
[4]
T. Itoh, “Application of Gratings in a Dielectric Waveguide for Leaky-Wave Antennas and Band-Reject Filters”, IEEE Trans. Microwave Theory Tech, Vol. 25, # 12. pp. 1134–1138, 1977.
[5]
F. Schwering and S. T. Peng, “Design of Dielectric Grating Antennas for Millimeter-Wave Applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 199–209, February 1983.
[6]
V. P. Shestopalov, Physical foundation of the millimeter and submillimeter waves technique, Volume 1: Open structures. Utrecht, The Netherlands and Tokyo, Japan: VSP Books, Inc., 1997.
[7]
S. Sautbekov, K. Sirenko, Yu. Sirenko, and A. Yevdokymov, “Diffraction radiation effects,” IEEE Antennas & Propagation Magazine, vol. 57, no. 5, pp. 73-93, Oct. 2015.
[8]
S. D. Andrenko, N. D. Devyatkov, and V. P. Shestopalov, “Millimeter wave band antenna arrays”, Proceedings academy of sciences of USSR, vol. 240, # 6, pp. 1340-1343, 1978 (in Russian).
[9]
V. P. Shestopalov, S. D. Andrenko, V. G. Belyaev, Yu. B. Sidorenko, and S. A. Provalov, “Transformation of millimeter and submillimeter surface waves into volume waves and this phenomena utilization in physics and technique,” Bulletin of Academy of Sciences of Ukrainian SSR, no. 1, pp. 8-21, Jan. 1977 (in Ukrainian).
[10]
V. Y. Budanov, A. D. Kyrylenko, S. A. Masalov, and V. P. Shestopalov, Diffraction radiation characteristics of various reflective gratings, Kharkov, Preprint IRE NASU, no. 83, 1977 (in Russian).
[11]
D. Marcuse, Theory of dielectric optical waveguides, Academic, New York, 1974.
[12]
Yu. B. Sidorenko, “Eigen modes of “dielectric layer – ribbon diffraction grating” electrodynamic system,” Telecommunications and Radio Engineering, vol. 65, no. 2, pp. 99-109, 2006.
[13]
S. O. Steshenko, “The Accurate Two-Dimensional Model of the Effect of the Surface Waves Transformation into the Spatial Modes”, Telecommunications and Radio Engineering, vol. 65, no. 19, pp. 1765-1782, 2006.
[14]
S. O. Steshenko, Yu. B. Sidorenko, A. A. Kirilenko, “Initial guess selection for optimization of the given field distribution on the aperture of a leaky wave antenna”, IX International Conference on Antenna Theory and Techniques (ICATT), 16-20 Sept. 2013, pp. 450-452, 2013.
[15]
V. P. Shestopalov, The method of the Riemann-Hulbert problem in the theory of diffraction and radio waves propagation, Kharkov University, 1971 (in Russian).
[16]
R. Hunsperger. Integrated Optics: Theory and Technology. Springer-Verlag Berlin Heidelberg New York Tokyo, 1984.
[17]
A. Poyedinchuk, Y. Tuchkin, and V. Shestopalov, “Diffraction by curved strips,” Transactions IEE Japan, vol. 113-A, no. 3, pp. 139-147, 1993.
[18]
A. Y. Poyedinchuk, Yu. A. Tuchkin, and V. P. Shestopalov, “The Riemann-Hilbert problem method in the theory of waves diffraction on screens of arbitrary cross-section”, Journal of commutative mathematics and mathematical physics, vol. 38, no. 8, pp. 1314-1328, 1998 (in Russian).
[19]
A. Ye. Poyedinchuk, Y. A. Tuchkin, and V. P. Shestopalov, “New Numerical-Analytical Methods in Diffraction Theory,” Mathematical and Computer Modeling, vol. 32, pp. 1029-1046. 2000.
[20]
V. P. Shestopalov, Yu. A. Tuchkin, A. Y. Poyedinchuk, and Yu. K. Sirenko, “New methods of solving of direct and inverse problems of the diffraction theory”, Kharkov: Osnova, 1997 (in Russian).
[21]
A. Kirilenko, A. I. Nosich, L. A. Rud, V. I. Tkachenko, “Overview of the current state of antenna modeling and development of modular software in Ukraine and the FSU”, Proc. of European Conf. Antennas and Propagation (EuCAP-2006), Nice, France, 6–10 Nov., 2006.
[22]
S. Shylo, Yu. Sydorenko, D. Wheeler, and D. Dundonald, “W-band passive imaging system implemented with rotating diffraction antenna technology,” Proc. of SPIE, vol. 8900, pp. 890008-890010, 2013.
[23]
S. Shylo, Yu. Sydorenko, S. Harmer, D. Wheeler, and Dundonald D., “Passive Millimetre-wave Imaging with a Planar Diffraction Antenna,” Proc. of CSNDSP’14, 9-th IEEE/IET Int. Symposium on Communication Systems, Networks and Digital Signals Processing, 23-25 July 2014, Manchester Metropolitan University, pp. 1095–1099. ISBN 978-1-4799-2581-0.
[24]
S. Shylo, Yu. Sydorenko, “A method for formation of radiometric images and an antenna for implementation of the method (Patent style)”, U.S. Patents 8836598, 9105960, 9385426, Sep. 16. 2014.
[25]
S. A. Shilo, V. M. Chmil, Yu. N. Muskin, V. A. Berezhnoy, Yu. B. Sidorenko, et al., “W-Band multibeam scanning radiometric system for contraband detections applications,” Proc. of the Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Sub-Millimeter Waves, Kharkov, Ukraine, June 21-26, 2004, vol. 2, pp. 881-886
[26]
P. N. Melezhik, Yu. B. Sydorenko, S. A. Provalov, S. D. Andrenko, and S. A. Shilo, “Planar antenna with diffraction radiation for radar complex of millimeter band,” Radioelectron. Commun. Syst., vol. 53, no. 5, pp. 233-240, 2010.
[27]
P. Melezhik, V. Razskazovskiy, Yu. Sydorenko, S. Provalov, N. Reznichenko, and V. Zuykov, “High-efficiency millimeter-wave coherent radar for airport surface movement monitoring and control,” Aviation., vol. 15, no. 2, pp. 38-43, 2011.
[28]
M.-S. Gupta, “Applications of electrical noise”, Proc. of the IEEE, vol. 63, no. 7, pp. 996-1010, 1975.
[29]
A. D. Kuz’min, A. E. Salomonovich, Radioastronomical methods of antenna measurement, New York Academic Press, 1966.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186