A Theoretical Study of the Electronic Properties of Cd1-xZnxS quantum Dot Superlattices
American Journal of Nano Research and Applications
Volume 2, Issue 3, May 2014, Pages: 45-49
Received: May 15, 2014; Accepted: May 26, 2014; Published: Jun. 10, 2014
Views 3208      Downloads 161
Authors
Saber Marzougui, Unité de Physique Quantique, Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5000 Monastir, Tunisia
Nabil Safta, Unité de Physique Quantique, Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5000 Monastir, Tunisia
Article Tools
Follow on us
Abstract
The present work is aimed to investigate theoretically the electronic properties of superlattices based on Cd1-xZnxS quantum dots embedded in an insulating material. This system, considered as a series of flattened cylindrical quantum dots with a finite barrier at the boundary, is studied using the tight binding approximation. The ground miniband width and the longitudinal effective mass have been computed, for the electrons, versus the Zn composition and the inter-quantum dot separation as well. An analysis of the results shows that the Zn compositions x = 0.4 and x = 0.6 are appropriate to give rise a superlattice behavior for conduction electrons in a range of inter –sheet separations studied.
Keywords
Quantum Dots, Superlattices, Cd1-xZnxS, Tight Binding Approximation, Non Volatile Memories
To cite this article
Saber Marzougui, Nabil Safta, A Theoretical Study of the Electronic Properties of Cd1-xZnxS quantum Dot Superlattices, American Journal of Nano Research and Applications. Vol. 2, No. 3, 2014, pp. 45-49. doi: 10.11648/j.nano.20140203.13
References
[1]
A. J. Peter and C. W. Lee.(2012), Electronic and optical properties of CdS/CdZnS nanocrystals, Chinese Phys. B 21: 087302.
[2]
L. Zhou, Y. Xing and Z. P. Wang(2012), Hydrogenic impurity bound polaron in a quantum dot quantum well structure, Eur. Phys. J. B. 85: 212.
[3]
F. Sco-tognella, G. Lanzani, L. Manna, F. Tassone and M. Zavelani-Rossi. (2012), Study of high-er-energy core states in CdSe/CdS octapod nanocrystals by ultrafast spectroscopy, Eur. Phys. J. B. 85: 128.
[4]
B. Bhattacharjee, S. K. Mandal, K. Chakrabarti, D. Ganguli and S. Chaudhui. (2002), Optical properties of Cd1−xZnxS nanocrystallites in sol–gel silica matrix, J. Phys. D: Appl. Phys. 35: 2636-2642.
[5]
L. Cao, S. Huang and S. E. (2004), ZnS/CdS/ZnS quantum dot quan-tum well produced in inverted micelles, J. colloid Interface Sci. 273: 478-482.
[6]
H. Kumano, A. Ueta and I. Suemune. (2002), Modified spontaneous emission properties of CdS quantum dots embedded in novel three-dimensional microcavities, Physica E 13: 441-445
[7]
Y. C. Zhang, W. W. Chen and X. Y. Hu. (2007), In air synthesis of hexagonal Cd1 − xZnxS nanoparticles from sin-gle-source molecular precursors, Mater. Lett. 61: 4847-4850
[8]
C. S. Pathak, D. D. Mishra, V. Agarawala, M. K. Mandal. (2012), Mechanochemical synthesis, characterization and optical properties of zinc sulphide nanoparticles, Indian J. Phys 86: 777-781.
[9]
S. Roy, A. Gogoi and G. A. Ahmed. (2010), Size dependent optical characterization of semiconductor particle: CdS embedded in polymer matrix, Indian J. Phys. 84: 1405-1411
[10]
A. U. Ubale and A. N. Bargal. (2010), Characterization of nanostructured photosensitive cadmium sulphide thin films grown by SILAR deposition technique, Indian J. Phys. 84: 1497-1507
[11]
K.K Nanda, S.N. Sarangi, S. Mohanty, S.N. Sahu. (1998), Optical properties of CdS nanocrystalline films prepared by a precipitation technique, Thin Solid Films 322: 21-27.
[12]
H. Yükselici, P. D. Persans and T. M. Hayes.(1995), Optical studies of the growth of Cd1-xZnxS nanocrystals in borosilicate glass, Phys. Rev. B. 52: 11763.
[13]
Q. Pang, B.C. Guo, C.L. Yang, S. H. Yang, M.L. Gong, W.K. Ge and J. N. Wang. (2004), Cd1−xMnxS quantum dots: new synthesis and characterization, Journal of Crystal Growth, 269: 213-217.
[14]
M.C. Klein, F. hache, D. Ricard and C. Flytzanis. (1990), Size de-pendence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe, Phys Rev. B. 42: 11123.
[15]
N. Safta, A. Sakly, H. Mejri and Y. Bouazra. (2006), Electronic and optical properties of Cd1-xZnxS nanocrystals, Eur. Phys. J. B 51: 75-78
[16]
A. Sakly, N. Safta, A. Mejri, H. Mejri, A. Ben Lamine. (2010), The Excited Electronic States Calculated for Cd1-xZnxS Quantum Dots Grown by the Sol-Gel Technique, J. Nanomater, ID746520.
[17]
N. Safta, A. Sakly, H. Mejri and M. A. Zaïdi. (2006), Electronic properties of multi-quantum dot structures in Cd 1-xZnxS alloy semiconductors, Eur. Phys. J. B 53: 35 – 38
[18]
A. Sakly, N. Safta, H. Mejri, A. Ben Lamine. (2009), The electronic band parameters calculated by the Kronig–Penney method for Cd1−xZnxS quantum dot superlattices, J. Alloys Compd. 476: 648–652.
[19]
A. Sakly, N. Safta, H. Mejri, A. Ben Lamine. (2011), The electronic states calculated using the sinusoidal potential for Cd1−xZnxS quantum dot superlattices, J. Alloys Compd.509: 2493–2495
[20]
S. Marzougui, N. Safta. (2014),The electronic band parameters calculated by the Triangular potential model for Cd1-xZnxS quantum dot superlattices, IOSR-JAP 5 (5) : 36-42
[21]
S. Marzougui. (2011), A study of the excited states in the flattened cylindrical quantum dots of Cd1-xZnxS, Master, University of Monastir.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186