Analysis of Carbon Nanotube Device Physics
American Journal of Nano Research and Applications
Volume 2, Issue 6, November 2014, Pages: 112-115
Received: Nov. 11, 2014; Accepted: Nov. 26, 2014; Published: Dec. 19, 2014
Views 2396      Downloads 293
Authors
Soheli Farhana, Dept. of Electrical and Computer Engineering, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia
Ahm Zahirul Alam, Dept. of Electrical and Computer Engineering, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia
Sheroz Khan, Dept. of Electrical and Computer Engineering, International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia
Article Tools
Follow on us
Abstract
In this paper, the device physics of carbon nanotubes is analyzed depend on the graphene structure. The analysis is done to calculate energy dispersion relation, effective mass and intrinsic carrier concentration of graphene to establish different carbon nanotubes. Diameters with different chiral vector (n, m) of carbon nanotubes vary the electronics properties of graphene. Different chiral vector of a graphene allows designing carbon nanotube (CNT) for different types of appliance, which can be achieved from the analyzed carrier concentration calculation. This investigation will helpful for further designing of CNT-based nano device.
Keywords
Carbon Nanotube, Graphene, Mass
To cite this article
Soheli Farhana, Ahm Zahirul Alam, Sheroz Khan, Analysis of Carbon Nanotube Device Physics, American Journal of Nano Research and Applications. Vol. 2, No. 6, 2014, pp. 112-115. doi: 10.11648/j.nano.20140206.11
References
[1]
A. Jorio, A., Gene, D., and Mildred S. D., (2008). eds. Carbon nanotubes. advanced topics in the synthesis, structure, properties and applications. Vol. 111. Springer, 2008.
[2]
M.J. O'connell, Sergei M. Bachilo, Chad B. Huffman,C.M. Valerie, S.S. Michael, H. Erik, Kristy, L. Rialon, (2002). Band gap fluorescence from individual single-walled carbon nanotubes. Science 297.5581 (2002): 593-596.
[3]
A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, (2003). Ballistic carbon nanotube field-effect transistors. Nature 424.6949 (2003): 654-657.
[4]
P.A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Van den Brink, and P. J. Kelly, (2009). First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B 79.19 (2009): 195425.
[5]
F. Schwierz, (2008). Graphene transistors. Nature nanotechnology 5.7 (2010): 487-496.
[6]
D.R. Paul, and L.M. Robeson L. M., (2008). Polymer nanotechnology: nanocomposites. Polymer 49.15 (2008): 3187-3204.
[7]
W. Qiao, X. Li, H. Bai, H., Y. Zhu, Y. Huang, (2012). Structure and electronic properties of the nanopeapods—One dimensional polymer encapsulated in single-walled carbon nanotubes. Journal of Solid State Chemistry, 186, 64-69
[8]
Q. Cao, A.R. John, (2008). Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects. Advanced Materials 21.1 (2008): 29-53.
[9]
J. C., Slater, (1974). Quantum theory of molecules and solids. New York: McGraw-Hill, Vol. 4.
[10]
A.H. Neto, F. Castro, N.M. Guinea, R. Peres, S. Kostya, K. Andre, "The electronic properties of graphene." Reviews of modern physics 81, no. 1 (2009): 109.
[11]
S. Farhana, A.Z. Alam, S. Khan and S. Motakabber,, (2013). Design and Development of a Simulator for Modelling Carbon Nanotube. Internatiiona Conference on Mechatronices (ICOM 2013), 2013, Kuala Lumpur, Malaysia
[12]
S. Farhana, A.Z. Alam, S. Khan and S. Motakabber, (2013). Analysis of CNT Electronics Structure to Design CNTFET. Proceedings of the 5th IEEE International Nanoelectronics Conference, IEEE INEC 2013, 2-4 January, Singapore, pp. 352-354.
[13]
S. Farhana, A.Z. Alam, S. Khan and S. Motakabber, (2013). Modeling of small Band-gap CNT for designing of faster switching CNTFET. Proceedings of the IEEE Business Engineering and Industrial Applications Colloquium 2013, Langkawi, Malaysia on 8 – 9 April 2013, pp. 565-568.
[14]
S. Farhana, A.Z. Alam, S. Khan and S. Motakabber, (2013). Modeling of Optimum Chiral Carbon Nanotube using DFT. The 13th IEEE International Conference on Nanotechnology, Beijing, China, August 5th to 8th, 2013
[15]
J. Zhang, A. Boyd, A. Tselev, M. Paranjape and P. Barbara, “Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors”, Appl. Phys. Lett., Vol. 88, p. 123112, 2006.
[16]
R.J. Chen, H.C. Choi, S. Bangsaruntip, E. Yenilmez, X. Tang, Q. Wang, Y.-L. Chang and H. Dai, “Investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices”, J. Am. Chem. Soc., Vol. 126, p. 1563, 2004.
[17]
W.E. Boyce and R.C. DiPrima, Elementary differential equations and boundary value problems, John Wiley and Sons, New York, 1986.
[18]
S.M. Sze, Physics of semiconductor devices, John Wiley & Sons, New York, 1981.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186