The Linewidth Broadening Factor: A Length-Scale-Dependent Analytical Approach
American Journal of Nano Research and Applications
Volume 5, Issue 1, February 2017, Pages: 1-6
Received: Feb. 28, 2017; Accepted: Mar. 30, 2017; Published: Apr. 17, 2017
Views 1234      Downloads 84
Authors
Abdessamad Benhsaien, Department of Mathematics, CÉGEP de l’Outaouais, Gatineau, Canada; Institute for Microstructural Sciences, National Research Council, Ottawa, Canada; Centrre for Research in Photonics, University of Ottawa, Ottawa, Canada
Zhenguo Lu, Institute for Microstructural Sciences, National Research Council, Ottawa, Canada; Centrre for Research in Photonics, University of Ottawa, Ottawa, Canada
Karin Hinzer, Centrre for Research in Photonics, University of Ottawa, Ottawa, Canada
Trevor James Hall, Centrre for Research in Photonics, University of Ottawa, Ottawa, Canada
Article Tools
Follow on us
Abstract
A first-order frequency-dependent formula of the linewidth broadening factor (α–factor) is derived in terms of scattering rates whilst, a mesoscopic disk approach is used in order to accompany the dimension effect to the spontaneous emission lifetime (inverse of scattering rate). An excitonic correction to the relaxation properties is shown to occur provided the binding energy of the electron and hole is comparable to their eigenenergy-separation. The ensuing analysis is independent of the selected III-V material system and resides upon three simplifying assumptions which allow for analytical formulae to be derived.
Keywords
α–Factor, Linewidth, Enhancement, Scattering, Spontaneous Emission, Exciton, Mesoscopic, Quantum Dot
To cite this article
Abdessamad Benhsaien, Zhenguo Lu, Karin Hinzer, Trevor James Hall, The Linewidth Broadening Factor: A Length-Scale-Dependent Analytical Approach, American Journal of Nano Research and Applications. Vol. 5, No. 1, 2017, pp. 1-6. doi: 10.11648/j.nano.20170501.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
I. D. Henning, J. V. Collins, “Measurements of the semiconductor laser linewidth broadening factor”, Electron. Lett., 19, pp. 927, 1983.
[2]
C. H. Henry, “Theory of the linewidth of semiconductor lasers”, IEEE J. Quantum Electron., 18, pp. 259-264, 1982.
[3]
A. Villafranca, J. A. Lázaro, I. Salinas and I. Garcés “Measurement of the Linewidth Enhancement Factor in DFB Lasers Using a High-Resolution Optical Spectrum Analyzer” IEEE Photon. Technol. Lett., 17, 2268-2270, 2005.
[4]
C. Harder, K. Vahala, A. Yariv, “Measurement of the linewidth enhancement factor of semiconductor lasers”, Appl. Phys. Lett., 42, pp. 328-330, 1983.
[5]
F. Devaux, Y. Sorel, J. F. Kerdiles “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter” J. Lightwave Technol., 11, 1993.
[6]
Hui, R.; Mecozzi, A.; D'Ottavi, A.; Spano, P, “Novel measurement technique of _ factor in DFB semiconductor lasers by injection locking”, Electron. Lett., 26, pp. 997 - 998, 1990.
[7]
Liu, G.; Jin, X.; Chuang, S. L., “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique”, IEEE Photon. Technol. Lett., 13, pp. 430 - 432, 2001.
[8]
Y. Yu, G. Giuliani, S. Donati, "Measurement of the Linewidth Enhancement Factor of Semiconductor Lasers Based on the Optical Feedback Self-Mixing Effect", IEEE Photon. Technol. Lett., 16, pp. 990-992, 2004.
[9]
M. Sugawara, “Self-Assembled InGaAs/GaAs Quantum Dots”, Semiconductors and Semimetals, vol. 60, Academic Press, 1999, 0-12-752169-0.
[10]
S. L. Chuang, “Physics of Optoelectronic Devices”, Wiley Series in Pure and Applied Optics, 1995, ISBN 0471109398.
[11]
A. Benhsaien, “Self-Assembled Quantum Dot Semiconductor Nanostructures Modeling: Photonic Device Applications”, MASc thesis, 2006.
[12]
A. Benhsaien, T. J. Hall, “Self-Assembled Quantum Dot Semiconductor Nanostructure Modeling”, IEEE Journal of Optical and Quantum Electronics, OQEL565R1, 2008.
[13]
K. Dridi, A. Benhsaien, J. Zhang, T. J. Hall, “Narrow linewidth 1560 nm InGaAsP split-contact corrugated ridge waveguide DFB lasers’’, Optics Letters 39 (21) • October 2014.
[14]
K. Dridi, A. Benhsaien, J. Zhang, K. Hinzer, T. J. Hall, “Narrow linewidth two-electrode 1560 nm laterally coupled distributed feedback lasers with third-order surface etched gratings’’, Optics Express 22(16) August 2014.
[15]
K. Dridi, A. Benhsaien, J. Zhang, T. J. Hall, “Narrow Linewidth 1550 nm Corrugated Ridge Waveguide DFB Lasers’’, IEEE Photonics Technology Letters 26(12):1192-1195 June 2014.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931