Characterization of Carbon Nanotubes Loaded with Nitrogen, Phosphorus and Potassium Fertilizers
American Journal of Nano Research and Applications
Volume 5, Issue 2, April 2017, Pages: 12-18
Received: Feb. 26, 2017; Accepted: Apr. 7, 2017; Published: May 2, 2017
Views 1759      Downloads 143
Mohammed Nagib Abdel-Ghany Hasaneen, Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
Heba Mahmoud Mohammad Abdel-Aziz, Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
Aya Moheb Omer, Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
Article Tools
Follow on us
Carbon nanotubes either single-walled or multiwalled have been a focus in materials research. Carbon nanotubes are tubular structures of nanometer diameter and large length/diameter ratio. The nanotubes may consist of one, tens and hundreds of concentric shells of carbons with adjacent shells separation of ˜0.34 nm and they can have different individual structures, morphologies and properties. Hence, a wide variety of synthetic methods have been developed to produce the desired materials and properties for scientific studies or technological applications. In this study we succeeded to develop a chemical synthetic method that allows us to prepare carbon nanotubes (CNTs) from graphite powder easily and inexpensively at low temperatures (below 70°C) and without applying pressure.
Carbon Nanotubes, Fertilizer, Synthesis, Zeta Potentials, Infra-red Spectroscopy
To cite this article
Mohammed Nagib Abdel-Ghany Hasaneen, Heba Mahmoud Mohammad Abdel-Aziz, Aya Moheb Omer, Characterization of Carbon Nanotubes Loaded with Nitrogen, Phosphorus and Potassium Fertilizers, American Journal of Nano Research and Applications. Vol. 5, No. 2, 2017, pp. 12-18. doi: 10.11648/j.nano.20170502.11
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering, 43: 61–102.
Endo, M. (1975). Mecanisme de croissance en phase vapeur de fibres de carbone. PhD thesis, University of Orleans, France.
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354: 56–58.
Qiu, J.; Li, Y.; Wang, Y. and Li W. (2004). Production of carbon nanotubes from coal. Fuel Processing Technology, 85: 1663– 1670.
Dai, H.; Kong, J.; Zhou, C.; Franklin, N.; Tombler, T.; Cassell, A.; Fan, S. and Chapline, M. (1999). Controlled chemical routes to nanotube architectures, physicsand devices, Journal of Physical Chemistry, 103: 11246–11255.
Dai, H. (2002). Carbon nanotubes: synthesis, integration, and properties. Accounts of Chemical Research, 35: 1035–1044.
Lal, R (2008). Soils and India’s food security. Journal of the Indian Society of Soil Science, 56: 129–138.
Jinghua, G. (2004). Synchrotron radiation, soft X-ray spectroscopy and nano-materials. Journal of Nanotechnology, 1: 193-225.
Lee, D. W. and Seo, J. W. (2011). Preparation of carbon nanotubes from graphite powder at room temperature.
Hasaneen, M. N. A.; Abdel-Aziz, H. M. M.; El-Bialy; D. M. A. and Omer, A. M. (2014). Preparation of chitosan nanoparticles for loading with NPK. African Journal of Biotechnology, 13: 3158-3164.
Nallamuthu, I.; Devi, A. and Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of pharmaceutical Science, 10: 203- 211.
Steeds, J. W. (1981). In Quantitative Microanalysis with High Spatial Resolution, The Metals Society, London, 210.
Champaness, P. E. (1987). Convergent beam electron diffraction. Mineralogical Magazine, 51: 33-48.
Frederick, M. D (2009). Measuring Zeta Potential of Nanoparticles. Nanotechnology Characterization Laboratory.
Trykowski, G.; Biniak, S.; Stobinski, L. and Lesiak, B. (2010). Preliminary Investigations into the Purification and Functionalization of Multiwall Carbon Nanotubes. Acta Physica Polonica, 118: 515-518.
McCleverty, J. A. (1989). Advanced inorganic chemistry, 5th edition cotton, fa, Wilkinson, G. Nature, 338: 182-182.
Becker, L.; Poreda, R. J. and Bunch, T. E. (2000). Fullerenes: An extraterrestrial carbon carrier phase for noble gases. Proceedings of the National Academy of Sciences of the United States of America, 97: 2979-2983.
Rosca, I. D.; Watari, F.; Uo, M. and Akasaka, T. (2005). Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon, 43: 3124-3131.
Wang, W.; Jiang, C.; Zhu, L.; Liang, N.; Liu, X.; Jia, J.; Zhang, C.; Zhai, S. and Zhang, B. (2014). Adsorption of Bisphenol A to a Carbon Nanotube Reduced Its Endocrine Disrupting Effect in Mice Male Offspring. International Journal of Molecular Science, 15: 15981-15993.
Li, Y.; Chen, X. and Gu, N. (2008). Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. Journal of Physics, Chemistry and Botany, 112(51): 16647-16653.
Fagan, S. B.; Souza, A. G.; Lima, J. O. G.; Mendes, J.; Ferreira, O. P.; Mazali, I. O.; Alves, O. L. and Dresselhaus, M. S. (2004). 1,2- dichlorobenzene interacting with carbon nanotubes. Nanotechnology Letters, 4: 1285–1288.
Labidi, N. S. and Djebaili, A. (2008). Studies of the mechanism of polyvinyl alcohol adsorption on the calcite/water interface in the Presence of sodium oleate. Journal of Minerals and Materials Characterization and Engineering, 7: 147-161.
Cruz, E. F.; Zheng, Y.; Torres, E.; Li, W.; Song, W. and Burugapalli, K. (2012). Zeta Potential of Modified Multi-walled Carbon Nanotubes in Presence of poly (vinyl alcohol) Hydrogel. International Journal of Electrochemical Science, 7: 3577–3590.
Kouklin, N.; Tzolov, M.; Straus, D.; Yin, A. and Xua, J. M. (2004). Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition. Applied Physics Letters, 85(19): 4463-4465.
Dyachkova, T. P.; Melezhyk, A. V.; Gorsky, S. Yu.; Anosova, I. V. and Tkachev, A. G. (2013). Some aspects of functionalization and modification of carbon nanomaterials. Nanosystems: physics, chemistry, mathematics, 4 (5): 605–621.
Misra, A.; Tyagi, P. K.; Rai, P. and Misra, D. S. (2007). FTIR Spectroscopy of multiwalled carbon nanotubes: a Simple approachto study the nitrogen doping. Journal of Nanoscience and Nanotechnology, 7 (6): 1820–1823.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186