Spin-Dependent Currents in Magnet/Normal Metal Based Magnetic Nanostructures
American Journal of Nano Research and Applications
Volume 5, Issue 5, October 2017, Pages: 69-80
Received: Oct. 10, 2017; Accepted: Oct. 24, 2017; Published: Nov. 27, 2017
Views 1511      Downloads 88
Authors
Andrii Korostil, Department of Magnetic Materials and Nanocrystalline Structures, Institute of Magnetism NASU, Kyiv, Ukraine
Mykola Krupa, Department of Magnetic Materials and Nanocrystalline Structures, Institute of Magnetism NASU, Kyiv, Ukraine
Article Tools
Follow on us
Abstract
The spin transport through and near interfaces have been studied in magnet/normal metal based multilayer magnetic nanostructures in magneto-static and magneto-dynamic cases. Its features and accompanying effects, such as the magnetoresistance or the magnetic precession induced spin pumping and spin accumulation in adjacent normal metal are determined by the spin-dependent scattering on the interface. These effects are governed by the entire spin-coherent region that is limited in size by spin-flip relaxation processes and can be controlled by the spin-polarized current of different origin including the spin Hall effect. Conditions of realization of the mentioned spin currents in the multilayer magnetic nanostructures are studied.
Keywords
Spin Currents, Magnetic Nanostructures, Spin-Dependent Scattering, Magnetic Dynamics, Spin Pumping
To cite this article
Andrii Korostil, Mykola Krupa, Spin-Dependent Currents in Magnet/Normal Metal Based Magnetic Nanostructures, American Journal of Nano Research and Applications. Vol. 5, No. 5, 2017, pp. 69-80. doi: 10.11648/j.nano.20170505.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Equation Chapter 1 Section 1 L. Zutic, J. Fabian, and S. Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys., vol. 76, pp. 323-413, April 2004.
[2]
J. Fisher, O. Gomonay, R. Schlitz, K. Ganzhorn, N. Vliestra, M. Althammer et al. “Spin Hall magnetoresistance in antiferromagnet/normal metal heterostructures,” arXiv:cond-mat.mes-hall, September 2017.
[3]
Y. Tserkovnyak, A. Brataas, G. E. Bauer, and B. I. Halperin, “Nonlocal magnetization dynamics in ferromagnetic heterostructures,” Rev. Mod. Phys., vol. 77, pp. 1375-1421, October 2005.
[4]
A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, “Spin-transport in multi-terminal normal metal – ferromagnet systems with non-collinear magnetization.” Eur. Phys. J., vol. B22, pp. 99-110, February 2001.
[5]
J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater.. vol. 159, pp L1-L7, February 1996.
[6]
A. Manchona, N. Strelkova, B. N. Ryzhanovaa, B. A. Vedyayeva, B. B. Dienya, J. C. Slonczewski, “Theoretical investigation of the relationship between spin torque and magnetoresistance in spin-valves and magnetic tunnel junctions,” J. Magn. Magn. Mater.. vol. 316, pp L977-L979, March 2007.
[7]
J. Akerman, “Toward a Universal Memory,” Science, vol. 308, pp. 508–510, April 2005.
[8]
J. Katine, and E. F. Fullerton, “Device implications of spin-transfer torques,” J. Magn. Magn. Mater., 320, 1217–1226, April 2008.
[9]
G. Binasch, P. Grünberg, Saurenbach F., and W. Ziman, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev., vol. B 39, pp. 4828-4830, March 1989.
[10]
X. Waintal, E. B. Myers, P. W. Brouwer, and D. C. Ralph, “Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers,” Phys. Rev., vol. B 62, pp. 12317-12327, November 2000.
[11]
M. Büttiker, “Four-Terminal Phase-Coherent Conductance,” Phys. Rev. Lett., vol. 57, pp. 1761-1764, October 1986.
[12]
P. Danielewicz, “Quantum Theory of Nonequilibrium Processes,” Ann. Phys., vol. 152, pp. 234-304, November 1984.
[13]
P. Myöhänen, A. Stan, G. Stefanucci and R. van Leeuwen. “Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime,” Phys. Rev. vol. B 80, pp. 115107-1─115107-15, September 2009.
[14]
R. Cheng, J.-J. Zhu, and D. Xiao, “Dynamic Feedback in Ferromagnet/Spin Hall Heterostructures,” Phys. Rev. B vol. 117, pp. 097202-097206, August 2016.
[15]
A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, “ New Perspective for Rashba Spin-Orbit Coupling,” Nature Materials, vol. 36, pp. 871-382, August 2015.
[16]
I. M. Miron, G Gilles, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, “Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer,” Nat. Matter., vol. 9, pp. 230-234, January 2010.
[17]
A. Brataas, Y. V. Nazarov, J. Inoue, G. E. W. Bauer, “Spin accumulation in small ferromagnetic doublebarrier junctions,” Phys. Rev. vol., B 59, 93-96, January 1999.
[18]
D. Huertas Hernando, A. Brataas, Y. V. Nazarov, G. E. W. Bauer, “Conductance modulation by spin precessing in noncollinear ferromagnet/normal metal ferromagnetic multilayers,” Phys. Rev., vol. B 62, pp. 5700-5712, September 2000.
[19]
M. A. M. Gijos, and G. E. W. Bauer, “Perpendicular giant magnetoresistance of magnetic multilayers,” Adv. Phys., vol. 46, pp. 285-445, February 1997.
[20]
G. E. W. Bauer, “Perpendicular transport through magnetic multilayers,” Phys. Rev. Lett., vol. 69, pp. 1676-1679, September 1992.
[21]
S. D. Bader and S. S. P. Parkin, “Spintronics.”Annual Review of Condensed Matter Physics, vol. 1, pp. 71-88, April 2010.
[22]
T. J. Silva and W. H. Rippard, “Developments in nano-oscillators based upon spin-transfer point-contact devices,’’ J. Magn. Magn. Mater. vol. 320, pp. 1260-1271, April 2008.
[23]
P M Braganca, B A Gurney, B A Wilson, J A Katine, S Maat, and J R Childress, “Nanoscale magnetic field detection using a spin torque oscillator,” Nanotechnology, vol. 21, pp. 235202-1─235202-6, May 2010.
[24]
S. Matsunaga, K. Hiyama, A. Matsumoto, S. Ikeda, H. Hasegawa, K. Miura, J. Hayakawa, T. Endoh, H. Ohno, and T. Hanyu, “Standby-power-free compact ternary content-addressable memory cell chip using magnetic tunnel junction devices,” Applied Physics Express, vol. 2, pp. 023004-1─023004-6, February 2009.
[25]
K. Nagasaka, “CPP-GMR technology for magnetic read heads of future high-density recording systems,” J. Magn. Magn. Mater., vol. 321, pp. 508-51, June 2009.
[26]
M. D. Stiles and A. Zangwill, “Anatomy of spin-transfer torque,” Phys. Rev., vol. B 66, pp. 014407-1─014407-14, June 2002.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186