American Journal of Nano Research and Applications

| Peer-Reviewed |

Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review

Received: 17 October 2017    Accepted: 30 October 2017    Published: 01 February 2018
Views:       Downloads:

Share This Article

Abstract

Titanium dioxide is a widely accepted photocatalyst due to its high oxidation efficiency, non-toxicity, high photostability, chemical inertness and environmentally friendly nature. There are several number of attempt have been made to synthesize TiO2 nanomaterials with different methods. In this paper we have to show the effect of synthesis methods and their surface morphology with temperature. The different methods are used for the synthesis of different Titania based nanomaterials. These methods are sol-gel method, sol method, electrodeposition method, micelle and reverse micelle methods, direct oxidation, chemical vapour deposition method, hydrothermal method, solvothermal method, Ultrasonication methods and microwave method. In this paper, we are summarizing the synthesis methods, morphology of Titania and crystal structure of the TiO2 nanomaterials. We are also showing the different nanostructures of TiO2 materials.

DOI 10.11648/j.nano.20180601.11
Published in American Journal of Nano Research and Applications (Volume 6, Issue 1, March 2018)
Page(s) 1-10
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Titania, Nanomaterials, Hydrothermal, Sol-Gel, Solvothermal, Electrodeposition, Micelle

References
[1] G. D. Arora, (2000), Crystallography and Crystal Structure, Ist edition, Sarup and Sons: New Delhi, India.
[2] D. R. Askland, (1996), The Science and Engineering of Materials, Third Edition, London, Chapman & Hall, 854.
[3] R. B. Draper and F. M. Anne, Langmuir, 6, (1990) 1396-1402.
[4] A. Fujishima, (1972). "Electrochemical Photolysis of Water at a Semiconductor Electrode". Nature 238: 37.
[5] K. Pirkanniemi, M. Sillanpää (2002) Chemosphere, 48, 10, 1047-1060.
[6] M. M. Mohamed, I. Othman and R. M. Mohamed., J. of Photochemistry and Photobiology A: Chemistry, 191, (2007), 153-161.
[7] M. M. Byranvand, A. N. Kharat, L. Fatholahib, Z. M. Beiranvand, JNS 3 (2013) 1-9.
[8] https://pavemaintenance. wikispaces.com/TiO2+Photocatalys+-+Shannon.
[9] G. Meacock, K. D. A. Taylor, M. J Knowles, A. Himonides, J. Sci. Food. Agric. 73 (1997), 221-225.
[10] D. P. Macwan, P. N. Dave, J. Mater. Sci. 46 (2011) 3669–3686.
[11] O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes, Adv. Mater. 15 (2003) 624–627.
[12] B. M. Wen, C. Y. Liu, Y. Liu, J. Phys. Chem. B 109 (2005) 12372–12375.
[13] J. M. Wu, B. Qi, J. Phys. Chem. C. 111 (2007) 666–673.
[14] G. R. Yi, J. H. Moon, S. M. Yang, Chem. Mater. 13 (2001) 2613–2618.
[15] M. H. Bazargan, M. Malekshahi Byranvand, A. Nemati Kharat, Int. J. Mat. Res. 103 (2012) 347-351.
[16] R. K. Wahi, Y. Liu, J. C. Falkner, V. L. Colvin, J. Coll. Int. Sci. 302 (2006) 530–536.
[17] Andersson, M.; Oesterlund, L.; Ljungstroem, S.; Palmqvist, A. J. Phys. Chem. B, 106 (2002), 10674-10681.
[18] P. S. Shinde, C. H. Bhosale, J. Anal. Appl. Pyrolysis, 82 (2008) 83–88.
[19] W. H. Ryu, C. J. Park, H. S. Kwon, J. Nano. Nano. 8 (2008) 1–4.
[20] W. Tan, J. Chen, X. Zhou, J. Zhang, Y. Lin, X. Li, X. Xiao, J. Solid. State. Electrochem. 13 (2009) 651-656.
[21] H. Arami, M. Mazloumi, R. Khalifehzadeh, S. K. Sadrnezhaad, Mat. Let. 61 (2007) 4559–4561.
[22] A. B. Corradi, F. Bondioli, B. Focher, J. Am. Ceram. Soc. 88 (2005) 2639–2641.
[23] H. Nishikiori, S. Fujiwara, S. Miyagawa, N. Zettsu, K. Teshima, Applied Catalysis B: Environmental, 217, 2017, 241-246.
[24] A. L. Kretzschmar, M. Manefield, AIMS Environmental science, 2 (2), 2015, 122-133.
[25] A. k. Nishad, Bhaskarapillai, Sankaralingam Velmuruga, Journal of Hazardous Materials, 334, 2017, 160-167Padala Abdul.
[26] I. Kurajica, I. Minga, V. Grčić, M. Mandić, M. Plodinec, Materials Chemistry and Physics, 196, 2017, 194-204S.
[27] G. Scholz, E. Kemnitz, Modern Synthesis Processes and Reactivity of Fluorinated Compounds, 2017, 609-649.
[28] C. Hintze, K. Morita, R. Riedel, E. Ionescu, G. Mera, Journal of the European Ceramic Society, 36, Issue 12, 2016, 2923-2930.
[29] R. Vijayalakshmi and V. Rajendran, Archives of Applied Science Research, 2012, 4 (2): 1183-1190.
[30] M. S. AlHammad, Journal of Alloys and Compounds, 661, 2016, 251-256.
[31] R. D. Kale and Chet Ram Meena, Advances in Applied Science Research, 2012, 3 (5): 3073-3080.
[32] M. M. Chamakh, D. Ponnamma, M. A. Ali Al-Maadeed, Results in Physics, 7, 2017, 590-592.
[33] N. M. Makwana, C. J. Tighe, R. I. Gruar, P. F. McMillan, J. A. Darr, Materials Science in Semiconductor Processing, 42, Part 1, 2016, 131-137.
[34] Y. Zhou, Y. Huang, D. Li, W. He, Mat. Res. Bull. 48 (2013) 2420-2425.
[35] Qinghong Zhang and Lian Gao, Langmuir 2003, 19, 967-971.
[36] Hongrui Peng, Guicun Li, Zhikun Zhang, Materials Letters 59 (2005) 1142– 1145.
[37] Z. Liu, R. Wang, F. Kan and F. Jiang, Asian Journal of Chemistry; Vol. 26, No. 3 (2014), 655-659.
[38] P. Kluson, H. Luskova, O. Solcova, L. Matejova, T. Cajthaml, Materials Letters, 61, Issues 14–15, 2007, 2931-2934.
[39] S. Elbasuney, Applied Surface Science, 409, 2017, 438-447.
[40] E. Stathatos and P. Lianos, Langmuir 1997, 13, 4295-4300.
[41] Andrei Zdravkov, Juliya Kudryashova, Andrei Kanaev, Alexey Povolotskiy, et al. Materials Chemistry and Physics, 160, 2015, 73-79.
[42] S. Kurajica, I. Minga, I. Grčić, V. Mandić, M. Plodinec, Materials Chemistry and Physics, 196, 2017, 194-204.
[43] Shu Yin, Yoshinobu Fujishiro, Jihuai Wu, Minoru Aki, Tsugio Sato, Journal of Materials Processing Technology, 137, 2003, 45-48.
[44] Azad Kumar, Gajanan Pandey, Desalination and Water Treatment, 71 (2017) 406–419.
[45] K. D. Á. Sanchez, O. V. Cuchillo, A. A. Elguezabal, A. C. López, A. H. Gómez, Mater. Chem. Phys., 13 (2013) 423-430.
[46] C. Albano, Y. Sarmiento, G. González, Mat. Res. Bull.321 (2012) 76-79.
[47] Wu, J. M. J. Cryst. Growth. 269 (2004) 347-352.
[48] Wu, J. M.; Zhang, T. W.; Zeng, Y. W.; Hayakawa, S.; Tsuru, K.; Osaka, A. Langmuir. 21 (2005) 6995-6999.
[49] I. Djerdj, A. M. Tonej, M. Bijelic, V. Vranesa, A. Turkovic, Vacuum. 80 (2005) 371-378.
[50] J. H. Lee, H. S. Choi, J. H. Lee, Y. J. Kim, S. J. Suh, C. S. Chi, H. J. Oh, J. Cryst. Growth. 311 (2009) 638-641.
[51] Wu, J. M.; Hayakawa, S.; Tsuru, K.; Osaka, A. Cryst. Growth Des. 2 (2002) 147-152.
[52] John C. Hulteen and Charles R. Martin, J. Mater. Chem., 1997, 7 (7), 1075–1087.
[53] U. M. Patil, S. B. Kulkarni, P. R. Deshmukh, R. R. Salunkhe, C. D. Lokhande, Journal of Alloys and Compounds. 509 (2011) 6196-6199.
[54] J. Liu, J. Xu, R. Che, H. Chen, M. Liu, Z. Liu, Chem – A. Eur. J. 19 (2013) 6746-6752.
[55] Zhu, Y.; Li, H.; Koltypin, Y.; Hacohen, Y. R.; Gedanken, A. Chem. Commun. 12 (2001) 2616-2621.
[56] P. A. Russo, S. Lima, V. Rebuttini, M. Pillinger, M. G. Willinger, N. Pinna, A. A. Valente, RSC Adv. 3 (2013) 2595-2603.
[57] Barnard, A. S.; Zapol, P. Phys. ReV. B, 70 (2004) 235-241.
[58] A. Kruth, S. Hansen, T. Beweries, V. Brüser, K.-D. Weltmann, ChemSusChem. 6 (2013) 152-159.
[59] S. Komarneni, R. K. Rajha, and H. Katsuki, Mat. Chem. Phys. 61 (1999) 50–54.
[60] Xing Wua, Qi-Zhong Jianga, Zi-Feng Maa, Min Fua, Wen-Feng Shangguan, Solid State Communications 136 (2005) 513–517.
Author Information
  • Department of Applied Chemistry, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India

  • Department of Applied Chemistry, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Cite This Article
  • APA Style

    Azad Kumar, Gajanan Pandey. (2018). Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review. American Journal of Nano Research and Applications, 6(1), 1-10. https://doi.org/10.11648/j.nano.20180601.11

    Copy | Download

    ACS Style

    Azad Kumar; Gajanan Pandey. Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review. Am. J. Nano Res. Appl. 2018, 6(1), 1-10. doi: 10.11648/j.nano.20180601.11

    Copy | Download

    AMA Style

    Azad Kumar, Gajanan Pandey. Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review. Am J Nano Res Appl. 2018;6(1):1-10. doi: 10.11648/j.nano.20180601.11

    Copy | Download

  • @article{10.11648/j.nano.20180601.11,
      author = {Azad Kumar and Gajanan Pandey},
      title = {Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review},
      journal = {American Journal of Nano Research and Applications},
      volume = {6},
      number = {1},
      pages = {1-10},
      doi = {10.11648/j.nano.20180601.11},
      url = {https://doi.org/10.11648/j.nano.20180601.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.nano.20180601.11},
      abstract = {Titanium dioxide is a widely accepted photocatalyst due to its high oxidation efficiency, non-toxicity, high photostability, chemical inertness and environmentally friendly nature. There are several number of attempt have been made to synthesize TiO2 nanomaterials with different methods. In this paper we have to show the effect of synthesis methods and their surface morphology with temperature. The different methods are used for the synthesis of different Titania based nanomaterials. These methods are sol-gel method, sol method, electrodeposition method, micelle and reverse micelle methods, direct oxidation, chemical vapour deposition method, hydrothermal method, solvothermal method, Ultrasonication methods and microwave method. In this paper, we are summarizing the synthesis methods, morphology of Titania and crystal structure of the TiO2 nanomaterials. We are also showing the different nanostructures of TiO2 materials.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review
    AU  - Azad Kumar
    AU  - Gajanan Pandey
    Y1  - 2018/02/01
    PY  - 2018
    N1  - https://doi.org/10.11648/j.nano.20180601.11
    DO  - 10.11648/j.nano.20180601.11
    T2  - American Journal of Nano Research and Applications
    JF  - American Journal of Nano Research and Applications
    JO  - American Journal of Nano Research and Applications
    SP  - 1
    EP  - 10
    PB  - Science Publishing Group
    SN  - 2575-3738
    UR  - https://doi.org/10.11648/j.nano.20180601.11
    AB  - Titanium dioxide is a widely accepted photocatalyst due to its high oxidation efficiency, non-toxicity, high photostability, chemical inertness and environmentally friendly nature. There are several number of attempt have been made to synthesize TiO2 nanomaterials with different methods. In this paper we have to show the effect of synthesis methods and their surface morphology with temperature. The different methods are used for the synthesis of different Titania based nanomaterials. These methods are sol-gel method, sol method, electrodeposition method, micelle and reverse micelle methods, direct oxidation, chemical vapour deposition method, hydrothermal method, solvothermal method, Ultrasonication methods and microwave method. In this paper, we are summarizing the synthesis methods, morphology of Titania and crystal structure of the TiO2 nanomaterials. We are also showing the different nanostructures of TiO2 materials.
    VL  - 6
    IS  - 1
    ER  - 

    Copy | Download

  • Sections