American Journal of Nano Research and Applications

| Peer-Reviewed |

Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation

Received: 10 November 2014    Accepted: 25 November 2014    Published: 23 December 2014
Views:       Downloads:

Share This Article

Abstract

The reliability of four force fields developed for 1-alkyl-3-methylimidazolium bis¬(tri¬fluoro¬methylsulfonyl)imide ionic liquids are compared to an ab inito molecular dynamics simulation regarding structural properties. Except the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion as well as the intramolecular potential surface of the anion in solution, structural properties are reproduced very well by all investigated force fields. Most recommended can be the force field developed by Canongia Lopes and Pádua because it reproduces best the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion.

DOI 10.11648/j.nano.s.2014020601.13
Published in American Journal of Nano Research and Applications (Volume 2, Issue 6-1, December 2014)

This article belongs to the Special Issue Advanced Functional Materials

Page(s) 19-26
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Ionic Liquids, Classical Molecular Dynamics Simulations, Ab Initio Molecular Dynamics Simulations

References
[1] Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772–3789.
[2] Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123–150.
[3] Walden, P. Bull. Acad. Sci. St Petersburg 1914, 405–422.
[4] Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965–967.
[5] Li, C.; Lin, J. J. Mater. Chem. 2010, 20, 6831–6847.
[6] Dupont, J.; Scholten, J. D. Chem. Soc. Rev. 2010, 39, 1780–1804.
[7] Zahn, S.; Uhlig, F.; Thar, J.; Spickermann, C.; Kirchner, B. Angew. Chem. Int. Ed. 2008, 47, 3639–3641.
[8] Zahn, S.; Bruns, G.; Thar, J.; Kirchner, B. Phys. Chem. Chem. Phys. 2008, 10, 6921–6924.
[9] Zahn, S.; Kirchner, B. J. Phys. Chem. A 2008, 112, 8430–8435.
[10] Izgorodina, E. I.; Bernard, U. L.; MacFarlane, D. R. J. Phys. Chem. A 2009, 113, 7064–7072.
[11] Kohanoff, J.; Pinilla, C.; Youngs, T. G. A.; Artacho, E.; Soler, J. M. J. Chem. Phys. 2011, 135, 154505.
[12] Grimme, S.; Hujo, W.; Kirchner, B. Phys. Chem. Chem. Phys. 2012, 14, 4875–4883.
[13] Zahn, S.; MacFarlane, D. R.; Izgorodina, E. I. Phys. Chem. Chem. Phys. 2013, 15, 13664–13675.
[14] Del Pópolo, M.; Lynden-Bell, R.; Kohanoff, J. J. Phys. Chem. B 2005, 109, 5895–5902.
[15] Bühl, M.; Chaumont, A.; Schurhammer, R.; Wipff, G. J. Phys. Chem. B 2005, 109, 18591–18599.
[16] Prado, C. E. R.; Pópolo, M. G. D.; Youngs, T. G. A.; Kohanoff, J.; and, R. M. L.-B. Mol. Phys. 2006, 104, 2477–2483.
[17] Bhargava, B.; Balasubramanian, S. Chem. Phys. Lett. 2006, 417, 486–491.
[18] Ghatee, M. H.; Ansari, Y. J. Chem. Phys. 2007, 126, 154502.
[19] Bhargava, B. L.; Balasubramanian, S. J. Phys. Chem. B 2007, 111, 4477–4487.
[20] Bagno, A.; D’Amico, F.; Saielli, G. ChemPhysChem 2007, 8, 873–881.
[21] Bhargava, B. L.; Balasubramanian, S. J. Phys. Chem. B 2008, 112, 7566–7573.
[22] Bhargava, B. L.; Saharay, M.; Balasubramanian, S. Bull. Mater. Sci. 2008, 31, 327–334.
[23] Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B. J. Chem. Phys. 2008, 129, 104505.
[24] Thar, J.; Brehm, M.; Seitsonen, A. P.; Kirchner, B. J. Phys. Chem. B 2009, 113, 15129–15132.
[25] Zahn, S.; Thar, J.; Kirchner, B. J. Chem. Phys. 2010, 132, 124506.
[26] Mallik, B. S.; Siepmann, J. I. J. Phys. Chem. B 2010, 114, 12577–12584.
[27] Krekeler, C.; Dommert, F.; Schmidt, J.; Zhao, Y. Y.; Holm, C.; Berger, R.; Delle Site, L. Phys. Chem. Chem. Phys. 2010, 12, 1817–1821.
[28] Zahn, S.; Wendler, K.; Delle Site, L.; Kirchner, B. Phys. Chem. Chem. Phys. 2011, 13, 15083–15093.
[29] Wendler, K.; Zahn, S.; Dommert, F.; Berger, R.; Holm, C.; Kirchner, B.; Delle Site, L. J. Chem. Theory Comput. 2011, 7, 3040–3044.
[30] Brüssel, M.; Brehm, M.; Voigt, T.; Kirchner, B. Phys. Chem. Chem. Phys. 2011, 13, 13617–13620.
[31] Brüssel, M.; Brehm, M.; Pensado, A. S.; Malberg, F.; Ramzan, M.; Stark, A.; Kirchner, B. Phys. Chem. Chem. Phys. 2012, 14, 13204–13215.
[32] Pensado, A. S.; Brehm, M.; Thar, J.; Seitsonen, A. P.; Kirchner, B. ChemPhysChem 2012, 13, 1845–1853.
[33] Wendler, K.; Brehm, M.; Malberg, F.; Kirchner, B.; Delle Site, L. J. Chem. Theory Comput. 2012, 8, 1570–1579.
[34] Brehm, M.; Weber, H.; Pensado, A. S.; Stark, A.; Kirchner, B. Phys. Chem. Chem. Phys. 2012.
[35] Zhang, Y.; Maginn, E. J. J. Phys. Chem. B 2012, 116, 10036–10048.
[36] Bodo, E.; Sferrazza, A.; Caminiti, R.; Mangialardo, S.; Postorino, P. J. Chem. Phys. 2013, 139, 144309.
[37] Hollóczki, O.; Kelemen, Z.; Könczöl, L.; Szieberth, D.; Nyulászi, L.; Stark, A.; Kirchner, B. Chem.Phys.Chem. 2013, 14, 315–320.
[38] Hollóczki, O.; Firaha, D. S.; Friedrich, J.; Brehm, M.; Cybik, R.; Wild, M.; Stark, A.; Kirchner, B. J. Phys. Chem. B 2013, 117, 5898–5907.
[39] Firaha, D. S.; Kirchner, B. J. Chem. Eng. Data 2014, DOI: 10.1021/je500166d.
[40] Thomas, M.; Brehm, M.; Hollóczki, O.; Kelemen, Z.; Nyulászi, L.; Pasinszki, T.; Kirchner, B. J. Chem. Phys. 2014, 141, 024510.
[41] Thomas, M.; Brehm, M.; Hollóczki, O.; Kirchner, B. Chem. Eur. J. 2014, 20, 1622–1629.
[42] Payal, R. S.; Balasubramanian, S. Phys. Chem. Chem. Phys. 2014, 16, 17458–17465.
[43] Gabl, S.; Schröder, C.; Steinhauser, O. J. Chem. Phys. 2012, 137, 094501.
[44] Hanke, C. G.; Price, S. L.; Lynden-Bell, R. M. Mol. Phys. 2001, 99, 801–809.
[45] Hunt, P. A. Mol. Simul. 2006, 32, 1–10.
[46] Pádua, A. A. H.; Costa Gomes, M. F.; Canongia Lopes, J. N. A. Acc. Chem. Res. 2007, 40, 1087–1096.
[47] Wang, Y.; Jiang, W.; Yan, T.; Voth, G. A. Acc. Chem. Res. 2007, 40, 1193–1199.
[48] Lynden-Bell, R. M.; Del Pópolo, M. G.; Youngs, T. G. A.; Kohanoff, J.; Hanke, C. G.; Harper, J. B.; Pinilla, C. C. Acc. Chem. Res. 2007, 40, 1138–1145.
[49] Maginn, E. J. Acc. Chem. Res. 2007, 40, 1200–1207.
[50] Bhargava, B. L.; Balasubramanian, S.; Klein, M. L. Chem. Commun. 2008, 3339–3351.
[51] Kirchner, B. Top. Curr. Chem. 2009, 290, 213–262.
[52] Borodin, O. J. Phys. Chem. B 2009, 113, 11463–11478.
[53] Maginn, E. J. J. Phys.: Condens. Matter 2009, 21, 373101.
[54] Dommert, F.; Wendler, K.; Berger, R.; Delle Site, L.; Holm, C. ChemPhysChem 2012, 13, 1625–1637.
[55] Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 2038–2047.
[56] Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 11250–11250.
[57] Canongia Lopes, J. N.; Pádua, A. A. H. J. Phys. Chem. B 2004, 108, 16893–16898.
[58] Canongia Lopes, J. N.; Pádua, A. A. H. J. Phys. Chem. B 2006, 110, 19586–19592.
[59] Canongia Lopes, J. N.; Pádua, A. A. H.; Shimizu, K. J. Phys. Chem. B 2008, 112, 5039–5046.
[60] Shimizu, K.; Almantariotis, D.; Costa Gomes, M. F.; Pádua, A. A. H.; Canongia Lopes, J. N. J. Phys. Chem. B 2010, 114, 3592–3600.
[61] Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 1225–11236.
[62] Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179.
[63] Köddermann, T.; Paschek, D.; Ludwig, R. ChemPhysChem 2007, 8, 2464–2470.
[64] Zhao, W.; Eslami, H.; und Florian Müller-Plathe, W. L. C. Z. Phys. Chem. 2007, 221, 1647–1662.
[65] Youngs, T. G. A.; Hardacre, C. ChemPhysChem 2008, 9, 1548–1558.
[66] Bhargava, B. L.; Balasubramanian, S. J. Chem. Phys. 2007, 127, 114510.
[67] Morrow, T. I.; Maginn, E. J. J. Phys. Chem. B 2002, 106, 12807–12813.
[68] Liu, H.; Maginn, E. J. Chem. Phys. 2011, 135, 124507.
[69] Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157–1174.
[70] Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269–10280.
[71] Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192–12193.
[72] Canongia Lopes, J.; Pádua, A. J. Phys. Chem. B 2006, 110, 3330–3335.
[73] Triolo, A.; Russina, O.; Bleif, H.-J.; Di Cola, E. J. Phys. Chem. B 2007, 111, 4641–4644.
[74] Xiao, D.; Rajian, J. R.; Cady, A.; Li, S.; Bartsch, R. A.; Quitevis, E. L. J. Phys. Chem. B 2007, 111, 4669–4677.
[75] VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. J. Comp. Phys. Comm. 2005, 167, 103–128.
[76] CP2K developers group, http://www.cp2k.org/.
[77] Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B 2005, 109, 6103–6110.
[78] Nosé, S. J. Chem. Phys. 1984, 81, 511–519.
[79] Hoover, W. G. Phys. Rev. A 1985, 31, 1695–1697.
[80] Martyna, G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 1992, 97, 2635–2643.
[81] Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
[82] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
[83] Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799.
[84] VandeVondele, J.; Hutter, J. J. Chem. Phys. 2007, 127, 114105.
[85] Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703–1710.
[86] Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641–3662.
[87] Krack, M. Theor. Chem. Acc. 2005, 114, 145–152.
[88] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.
[89] Kossmann, S.; Kirchner, B.; Neese, F. Mol. Phys. 2007, 105, 2049–2071.
[90] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
[91] Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257–2261.
[92] Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654–3665.
[93] Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41–51.
[94] Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys. 1979, 71, 3396–3402.
[95] Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
[96] Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327–341.
[97] Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles; McGraw-Hill, 1981.
[98] Plimpton, S. J. Comp. Phys. 1995, 117, 1–19.
[99] Brehm, M.; Kirchner, B. J. Chem. Inf. Model. 2011, 51, 2007–2023.
Author Information
  • Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, University of Leipzig, Leipzig, Germany

  • Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, University of Leipzig, Leipzig, Germany

Cite This Article
  • APA Style

    Stefan Zahn, Richard Cybik. (2014). Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation. American Journal of Nano Research and Applications, 2(6-1), 19-26. https://doi.org/10.11648/j.nano.s.2014020601.13

    Copy | Download

    ACS Style

    Stefan Zahn; Richard Cybik. Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation. Am. J. Nano Res. Appl. 2014, 2(6-1), 19-26. doi: 10.11648/j.nano.s.2014020601.13

    Copy | Download

    AMA Style

    Stefan Zahn, Richard Cybik. Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation. Am J Nano Res Appl. 2014;2(6-1):19-26. doi: 10.11648/j.nano.s.2014020601.13

    Copy | Download

  • @article{10.11648/j.nano.s.2014020601.13,
      author = {Stefan Zahn and Richard Cybik},
      title = {Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation},
      journal = {American Journal of Nano Research and Applications},
      volume = {2},
      number = {6-1},
      pages = {19-26},
      doi = {10.11648/j.nano.s.2014020601.13},
      url = {https://doi.org/10.11648/j.nano.s.2014020601.13},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.nano.s.2014020601.13},
      abstract = {The reliability of four force fields developed for 1-alkyl-3-methylimidazolium bis¬(tri¬fluoro¬methylsulfonyl)imide ionic liquids are compared to an ab inito molecular dynamics simulation regarding structural properties. Except the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion as well as the intramolecular potential surface of the anion in solution, structural properties are reproduced very well by all investigated force fields. Most recommended can be the force field developed by Canongia Lopes and Pádua because it reproduces best the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Comparison of Four Ionic Liquid Force Fields to an Ab Initio Molecular Dynamics Simulation
    AU  - Stefan Zahn
    AU  - Richard Cybik
    Y1  - 2014/12/23
    PY  - 2014
    N1  - https://doi.org/10.11648/j.nano.s.2014020601.13
    DO  - 10.11648/j.nano.s.2014020601.13
    T2  - American Journal of Nano Research and Applications
    JF  - American Journal of Nano Research and Applications
    JO  - American Journal of Nano Research and Applications
    SP  - 19
    EP  - 26
    PB  - Science Publishing Group
    SN  - 2575-3738
    UR  - https://doi.org/10.11648/j.nano.s.2014020601.13
    AB  - The reliability of four force fields developed for 1-alkyl-3-methylimidazolium bis¬(tri¬fluoro¬methylsulfonyl)imide ionic liquids are compared to an ab inito molecular dynamics simulation regarding structural properties. Except the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion as well as the intramolecular potential surface of the anion in solution, structural properties are reproduced very well by all investigated force fields. Most recommended can be the force field developed by Canongia Lopes and Pádua because it reproduces best the hydrogen bond structure between the most acidic hydrogen atom of the imidazolium ring and the nitrogen atom of the anion.
    VL  - 2
    IS  - 6-1
    ER  - 

    Copy | Download

  • Sections