Sadhana Polynomial and its Index of Hexagonal System Ba,b
International Journal of Computational and Theoretical Chemistry
Volume 1, Issue 2, September 2013, Pages: 7-10
Received: Jun. 6, 2013; Published: Sep. 10, 2013
Views 2750      Downloads 154
Author
Mohammad Reza Farahani, Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran
Article Tools
PDF
Follow on us
Abstract
Let G be an arbitrary graph. Two edges e=uv and f=xy of G are called co-distant (briefly: e co f) if they obey the topologically parallel edges relation. The Sadhana polynomial Sd(G,x), for counting qoc strips in G was defined by Ashrafi and co-authors as Sd(G,x)= cm(G,c)xE(G)-C where m(G,c), being the number of qoc strips of length c. This polynomial is most important in some physico chemical structures of molecules. In this paper, we compute the Sadhana polynomial and its index of an important class of benzenoid system.
Keywords
Molecular Graph, Omega Polynomial, Sadhana Polynomial, Benzenoid, Qoc Strip, Cut Method, Orthogonal Cut
To cite this article
Mohammad Reza Farahani, Sadhana Polynomial and its Index of Hexagonal System Ba,b, International Journal of Computational and Theoretical Chemistry. Vol. 1, No. 2, 2013, pp. 7-10. doi: 10.11648/j.ijctc.20130102.11
References
[1]
N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, (1992).
[2]
H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69, 17-20. (1947).
[3]
R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, (2000).
[4]
P.E. John, A.E. Vizitiu, S. Cigher, and M.V. Diudea, MATCH Commun. Math. Comput. Chem. 57, 479–484 (2007)
[5]
M.V. Diudea, S. Cigher and P.E. John. MATCH Commun. Math. Comput. Chem, 60, 237–250 (2008).
[6]
M.V. Diudea, S. Cigher, A.E. Vizitiu, O. Ursu and P. E. John, Croat. Chem. Acta, 79, 445 (2006).
[7]
A.E. Vizitiu, S. Cigher, M.V. Diudea and M.S. Florescu, MATCH Commun. Math. Comput. Chem. 57, 457 (2007).
[8]
M.V. Diudea, Hydrocarbons Using Orthogonal Cuts, J. Math. Chem (in print).
[9]
M.V. Diudea, Omega Polynomial. Carpath. J. Math. 22 43–47 (2006).
[10]
M.V. Diudea, S. Cigher, A.E. Vizitiu, M.S. Florescu and P.E. John, J. Math. Chem. 45 316-329 (2009).
[11]
A.R. Ashrafi, M. Ghorbani and M. Jalali, Int. J. Chem. 47(A), 535 (2008).
[12]
P.V. Khadikar, S. Joshi, A.V. Bajaj and D. Mandloi, Bioorg. Med.Chem. Lett. 14, 1187 (2004).
[13]
P.V. Khadikar, V.K. Agrawal and S. Karmarkar, Bioorg. Med. Chem. 2, 10, 3499 (2002).
[14]
A.R. Ashrafi, M. Ghorbani and M. Jalili. Computing Omega And Sadhana Polynomials of C12n+4 Fullerene. Digest. J. Nanomater. Bios. 4 (3), 403–406 (2009).
[15]
M. Ghorbani. A Note on IPR Fullerene. Digest. J. Nanomater. Bios. 6 (2), 599-602 (2011).
[16]
M. Ghorbani and M. Jalili. Omega And Sadhana Polynomials of Infinite Family of Fullerenes. Digest. J. Nanomater. Bios. 4 (1), 177 - 182 (2009).
[17]
J. Yazdani and A. Bahrani. Padmakar-Ivan, Omega And Sadhana Polynomial of HAC5C6C7 Nanotubes. Digest. J. Nanomater. Bios. 4 (3), 507-510 (2009).
[18]
A. Bahrani and J. Yazdani. Omega And Sadhana Polynomial of H-Naphtalenic Nanotubes And Nanotori. Digest. J. Nanomater. Bios. 3 (4), 309-314 (2008).
[19]
M.R. Farahani, Omega and Sadhana Polynomials of Circumcoronene Series of Benzenoid. World Applied Sciences Journal. 20(9), 1248-1251, (2012).
[20]
M.R. Farahani, K. Kato and M.P. Vlad. Omega Polynomials and Cluj-Ilmenau Index of Circumcoronene Series of Benzenoid. Studia Univ. Babes-Bolyai. 57(3) 177-182, (2012).
[21]
S. Ling-Ling, W. Zhi-Ning and Z. Li-Qiang, Chinese Journal of Chemistry, 23(3), 245-250. (2005).
[22]
Z. Bagheri, A. Mahmiani and O. Khormali. Iranian Journal of Mathematical Sciences and Informatics. 3(1), 31-39. (2008).
[23]
M.R. Farahani, Omega Polynomial of a Benzenoid System, Submitted for publish, (2013).
[24]
M.R. Farahani, Omega and related counting polynomials of Triangular Benzenoid Gn and linear hexagonal chain LHn. Journal of Chemica Acta. 2, 43-45. (2013).
[25]
M.R. Farahani, Counting Polynomials of Benzenoid Systems. Romanian Academy Seri B. 15, (2013). In press.
[26]
M.R. Farahani, Computing the Omega polynomial of an infinite family of the linear parallelogram P(n,m). Journal of Advances in Chemistry. 1, (2013) In press.
[27]
S. Klavzar. A Bird's Eye View of The Cut Method And A Survey of Its Applications In Chemical Graph Theory. MATCH Commun. Math. Comput. Chem. 60, 255-274 (2008).
[28]
P.E. John, P.V. Khadikar and J. Singh. A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts. J. Math. Chem. 42(1), 27-45 (2007).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186