Combination of Natural Dye (Crocetin) and Synthetic Dye (Indoline D205) for DSSCs Application
International Journal of Computational and Theoretical Chemistry
Volume 6, Issue 1, March 2018, Pages: 1-13
Received: Nov. 30, 2017; Accepted: Dec. 8, 2017; Published: Jan. 19, 2018
Views 601      Downloads 65
Authors
Abdala Msangi, Department of Materials, Energy Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Alexander Pogrebnoi, Department of Materials, Energy Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Tatiana Pogrebnaya, Department of Materials, Energy Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
Article Tools
Follow on us
Abstract
Dye-sensitized solar cells (DSSCs) are reckoned as emerging next-generation solar cells of a high potency. Co-sensitization of dyes facilitates widening of the light absorption range of a sensitizer and is one of possible options to improve overall DSSC performance. In this work, an effect of combination of the natural crocetin dye and synthetic metal free indoline D205 dye was studied. Molecular design of a complex formed from the individual dyes was attempted. The structures, vibrational and electronic spectra of the species were computed by DFT and TD-DFT B3LYP5 methods with mid-sized basis sets. The UV-vis absorption spectra were measured for individual dyes and their mixture in chloroform solutions. Electron density distribution of the frontier molecular orbitals and energy levels alignment were used for analysis of the electronic spectra and mechanism of transitions. The results indicated that the designed complex can be considered as a potential candidate for DSSCs application with improved properties compared to the individual dyes.
Keywords
Dye-Sensitized Solar Cells (DSSCs), IR and UV-Vis Spectra, Time-Dependent Density Functional Theory (TD-DFT), Crocetin, Indoline D205
To cite this article
Abdala Msangi, Alexander Pogrebnoi, Tatiana Pogrebnaya, Combination of Natural Dye (Crocetin) and Synthetic Dye (Indoline D205) for DSSCs Application, International Journal of Computational and Theoretical Chemistry. Vol. 6, No. 1, 2018, pp. 1-13. doi: 10.11648/j.ijctc.20180601.11
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, Vol. 353 (6346), pp. 737-740, 1991.
[2]
M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, Journal of the American Chemical Society, Vol. 127 (48), pp. 16835-16847, 2005.
[3]
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chemical Reviews, Vol. 110 (11), pp. 6595-6663, 2010.
[4]
M. K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: a brief overview, Solar Energy, Vol. 85 (6), pp. 1172-1178, 2011.
[5]
M. Miyashita, K. Sunahara, T. Nishikawa, Y. Uemura, N. Koumura, K. Hara, A. Mori, T. Abe, E. Suzuki, S. Mori, Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes, Journal of the American Chemical Society, Vol. 130 (52), pp. 17874-17881, 2008.
[6]
M. Alhamed, A. S. Issa, A. W. Doubal, Studying of natural dyes properties as photo-sensitizer for dye sensitized solar cells (DSSC), Journal of Electron Devices, Vol. 16 (11), pp. 1370-1383, 2012.
[7]
G. P. Smestad, M. Gratzel, Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter, Journal of Chemical Education, Vol. 75 (6), pp. 752, 1998.
[8]
H. W. Ham, Y. S. Kim, Theoretical study of indoline dyes for dye-sensitized solar cells, Thin Solid Films, Vol. 518 (22), pp. 6558-6563, 2010.
[9]
Z. Cai-Rong, L. Zi-Jiang, C. Yu-Hong, C. Hong-Shan, W. You-Zhi, Y. Li-Hua, DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells, Journal of Molecular Structure: THEOCHEM, Vol. 899 (1), pp. 86-93, 2009.
[10]
C.-R. Zhang, Z.-J. Liu, Y.-H. Chen, H.-S. Chen, Y.-Z. Wu, W. Feng, D.-B. Wang, DFT and TD-DFT study on structure and properties of organic dye sensitizer TA-St-CA, Current Applied Physics, Vol. 10 (1), pp. 77-83, 2010.
[11]
T. Ruiz-Anchondo, N. Flores-Holguín, D. Glossman-Mitnik, Natural carotenoids as nanomaterial precursors for molecular photovoltaics: a computational DFT study, Molecules, Vol. 15 (7), pp. 4490-4510, 2010.
[12]
F. De Angelis, Direct vs. indirect injection mechanisms in perylene dye-sensitized solar cells: A DFT/TDDFT investigation, Chemical Physics Letters, Vol. 493 (4), pp. 323-327, 2010.
[13]
N. Santhanamoorthi, C.-M. Lo, J.-C. Jiang, Molecular design of porphyrins for dye-sensitized solar cells: a DFT/TDDFT study, The Journal of Physical Chemistry Letters, Vol. 4 (3), pp. 524-530, 2013.
[14]
A. Mishra, M. K. Fischer, P. Bäuerle, Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules, Angewandte Chemie International Edition, Vol. 48 (14), pp. 2474-2499, 2009.
[15]
N. Shibayama, Y. Inoue, M. Abe, S. Kajiyama, H. Ozawa, H. Miura, H. Arakawa, Novel near-infrared carboxylated 1, 3-indandione sensitizers for highly efficient flexible dye-sensitized solar cells, Chemical Communications, Vol. 51 (64), pp. 12795-12798, 2015.
[16]
F. Zhang, Y.-h. Luo, J.-s. Song, X.-z. Guo, W.-l. Liu, C.-p. Ma, Y. Huang, M.-f. Ge, Z. Bo, Q.-B. Meng, Triphenylamine-based dyes for dye-sensitized solar cells, Dyes and Pigments, Vol. 81 (3), pp. 224-230, 2009.
[17]
D. Casanova, F. P. Rotzinger, M. Grätzel, Computational study of promising organic dyes for high-performance sensitized solar cells, Journal of Chemical Theory and Computation, Vol. 6 (4), pp. 1219-1227, 2010.
[18]
R. M. El-Shishtawy, Functional dyes, and some hi-tech applications, International Journal of Photoenergy, Vol. 2009, 2009.
[19]
D. Sahu, H. Padhy, D. Patra, D. Kekuda, C.-W. Chu, I.-H. Chiang, H.-C. Lin, Synthesis and application of H-Bonded cross-linking polymers containing a conjugated pyridyl H-Acceptor side-chain polymer and various carbazole-based H-Donor dyes bearing symmetrical cyanoacrylic acids for organic solar cells, Polymer, Vol. 51 (26), pp. 6182-6192, 2010.
[20]
D. Kuang, P. Walter, F. Nüesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells, Langmuir, Vol. 23 (22), pp. 10906-10909, 2007.
[21]
L. Y. Chew, H. E. Khoo, I. Amin, A. Azrina, C. Y. Lau, Analysis of phenolic compounds of dabai (Canarium odontophyllum Miq.) fruits by high-performance liquid chromatography, Food Analytical Methods, Vol. 5 (1), pp. 126-137, 2012.
[22]
K.-M. Lee, Y.-C. Hsu, M. Ikegami, T. Miyasaka, K. J. Thomas, J. T. Lin, K.-C. Ho, Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells, Journal of Power Sources, Vol. 196 (4), pp. 2416-2421, 2011.
[23]
S. W. Park, K. Lee, D.-K. Lee, M. J. Ko, N.-G. Park, K. Kim, Expanding the spectral response of a dye-sensitized solar cell by applying a selective positioning method, Nanotechnology, Vol. 22 (4), pp. 045201, 2010.
[24]
http://www.chemspider.com
[25]
A. A. Granovsky, Firefly version 8.2.0 www http://classic.chem.msu.su/gran/firefly/index.html.
[26]
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, General atomic and molecular electronic structure system, Journal of Computational Chemistry, Vol. 14 (11), pp. 1347-1363, 1993.
[27]
G. A. Zhurko, D. A. Zhurko, Chemcraft. Version 1.7 (build 132). Retrieved from HTML: www.chemcraftprog.com.
[28]
B. M. Bode, M. S. Gordon, MacMolPlt version 7.4.2, Journal of Molecular Graphics and Modelling, pp. 133–138, 1998 http://www.scl.ameslab.gov/MacMolPlt/.
[29]
J. Xu, H. Zhang, G. Liang, L. Wang, X. Weilin, W. Cui, L. Zengchang, DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells, Journal of the Serbian Chemical Society, Vol. 75 (2), pp. 259-269, 2010.
[30]
K. L. Tokarev, OpenThermo v. 1.0 Beta 1 (C) ed. http://openthermo.software.informer.com/. 2007-2009.
[31]
H. Schulz, M. Baranska, Identification and quantification of valuable plant substances by IR and Raman spectroscopy, Vibrational Spectroscopy, Vol. 43 (1), pp. 13-25, 2007.
[32]
J. B. Harbourne, Phytochemical methods: A guide to modern techniques of plant analysis, Ghapman and Hall Ltd, London, New York, pp. 4-120, 1984.
[33]
S. Higashijima, H. Miura, T. Fujita, Y. Kubota, K. Funabiki, T. Yoshida, M. Matsui, Highly efficient new indoline dye having strong electron-withdrawing group for zinc oxide dye-sensitized solar cell, Tetrahedron, Vol. 67 (34), pp. 6289-6293, 2011.
[34]
T. Le Bahers, T. Pauporté, G. Scalmani, C. Adamo, I. Ciofini, A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells, Physical Chemistry Chemical Physics, Vol. 11 (47), pp. 11276-11284, 2009.
[35]
H. Lin, S.-G. Zhu, P.-Y. Chen, K. Li, H.-Z. Li, X.-H. Peng, DFT investigation of a high energy density polynitro compound, 2, 2’-Bis (trinitromethyl)-5, 5’-azo-1, 2, 3, 4-tetrazole, Central European Journal of Energetic Materials, Vol. 10 (3), pp. 325-338, 2013.
[36]
C. I. Oprea, B. Frecuş, B. F. Minaev, M. A. Gîrţu, DFT study of electronic structure and optical properties of some Ru-and Rh-based complexes for dye-sensitized solar cells, Molecular Physics, Vol. 109 (21), pp. 2511-2523, 2011.
[37]
F. De Angelis, S. Fantacci, A. Selloni, Alignment of the dye’s molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT–TDDFT study, Nanotechnology, Vol. 19 (42), pp. 424002, 2008.
[38]
T. Le Bahers, T. Pauporte, G. Scalmani, C. Adamo, I. Ciofini, A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells, Physical Chemistry Chemical Physics, Vol. 11 (47), pp. 11276-11284, 2009.
[39]
M. W. Han, P. Ekanayake, L. C. Ming, V. N. Yoong, DFT/TD-DFT Studies on the Lawsone (Henna) as a Photosensitizer for Dye-Sensitized Solar Cells, Applied Mechanics and Materials, Vol. 789-790, pp. 56-60, 2015.
[40]
L. Peter, Characterization and modeling of dye-sensitized solar cells, ECS Transactions, Vol. 6 (2), pp. 555-565, 2007.
[41]
K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells, The Journal of Physical Chemistry B, Vol. 107 (2), pp. 597-606, 2003.
[42]
Z. Liu, Theoretical studies of natural pigments relevant to dye-sensitized solar cells, Journal of Molecular Structure: THEOCHEM, Vol. 862 (1), pp. 44-48, 2008.
[43]
A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chemical Reviews, Vol. 95 (1), pp. 49-68, 1995.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931