Topological Analysis of the Electron Density Illustrating the Stabilizing Interactions in Some Basic Solid-state Systems
International Journal of Computational and Theoretical Chemistry
Volume 7, Issue 2, December 2019, Pages: 115-120
Received: Oct. 31, 2019; Accepted: Nov. 21, 2019; Published: Dec. 7, 2019
Views 403      Downloads 88
Authors
James Tembei Titah, Department of Chemistry, University of New Brunswick, Fredericton, Canada
Franklin Che Ngwa, Department of Chemistry, University of New Brunswick, Fredericton, Canada
Peter Sirsch, Institute für Anorganische Chemie, Universsität Tübingen, Tübingen, Germany
Coulibaly Wacothon Karime, Department of Biochemistry, Peleforo Gon Coulibaly University, Korhogo, Ivory Coast
Mamadou Guy-Richard Kone, Faculty of Fundamental and Applied Sciences (UFR SFA), Nangui Abrogoua University, Abidjan, Ivory Coast
Article Tools
Follow on us
Abstract
The solid-state structures of Sodium (Na), Titanium (Ti), Diamond and Graphite, Sodium Chloride (NaCl), Magnesium Oxide (MgO), Cadmium (II) Iodide (CdI2) and Zirconium Chloride (ZrCl) have been explored in details using computational electron density methods; the full-potential linearized augmented plane wave (FPLAPW) method plus local orbital (FPLAPW+lo) embodied in the WIEN2k package code. Topological analysis of their DFT-computed electron densities in tandem with Bader’s Atoms in Molecules (AIM) theory reveals a plethora of stabilizing interactions some of which are really strong. Na and Ti metals reveal only metallic bonding, diamond and graphite show covalent bonding between the carbon-atoms. In addition, there exist Van der Waals forces between the carbon-atoms on adjacent planes in the graphene sheets. NaCl and MgO exhibit electrostatic interactions between the metals (Na, Mg) and non-metals (Cl, O) respectively. Furthermore, there exist Van der Waals interactions between Cl and O atoms. CdI2 and ZrCl both show ionic and Van der Waals forces between the atoms. ZrCl exhibit metallic bonding and NNMs between the Zr-atoms, which are absent in CdI2 due to longer Cd-Cd bond distances. Analyses of the electron density flatness (f), charge transfer index (c) and molecularity (μ) were computed. It is observed that the different types of interactions increase with complexity of the solid-state structures. Finally, non-nuclear maxima (NNM) were identified for the first time in heteroatomic solid-state systems.
Keywords
Atoms in Molecules, DFT Calculations, Electron density, Non-nuclear Maxima Topological Analysis
To cite this article
James Tembei Titah, Franklin Che Ngwa, Peter Sirsch, Coulibaly Wacothon Karime, Mamadou Guy-Richard Kone, Topological Analysis of the Electron Density Illustrating the Stabilizing Interactions in Some Basic Solid-state Systems, International Journal of Computational and Theoretical Chemistry. Vol. 7, No. 2, 2019, pp. 115-120. doi: 10.11648/j.ijctc.20190702.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
A. F. Wells, Structural Inorganic Chemistry 1984, 5th Edition, Oxford University Press, 4-28.
[2]
R. F. W Bader, Atoms in Molecules. A Quantum Theory, 1990, Clarendon, Oxford.
[3]
P. L. A Popelier, Atoms in Molecules. An Introduction, 1999, Peason Education, Harlow, UK.
[4]
Zou P. F., Bader R. F. W. Acta Crystallogr. A 1994, 50, 714-725.
[5]
Luana V., Costales A., Martin Pendas A. Phys. Rev. B 1997, 55, 4285-4297.
[6]
Popelier P. L. A, Joubert L., D. S. Kosov J. Phys. Chem. A 2001, 105, 8254-8261.
[7]
Martin Pendas A. J. Chem. Phys. 2002, 117, 965-979, b. Remi C., Christine L., Bernard S., Applications of Topological Methods in Molecular Chemistry, 2016, 59-63.
[8]
Chérif F. Matta and Russel J. Boyd, An Introduction of the Quantum Theory of Atoms in Molecules, 2007, b. David J. Wolstenholme, James T. Titah, Franklin Che, Sean McGrady J. Am. Chem. Soc. 2011, 133, 16598-16604.
[9]
P. Mori-Sanchez, A. M. Pendas, and V. Luana, J. Am. Chem. Soc, 2002, (124), 1421-1423.
[10]
D. R. Alcoba et al, Chemical Physics Letters, 2005, (407), 379-383.
[11]
V. Luana, P. Mori-Sanchez, A. Costales, M. A. Blanco and A. M. Pendas, J. Chem. Phys. 2003, (119), 12, 6341-7349.
[12]
A. M. Pendas et al, Phys. Rev. Letts. 1999, (83), 10, 1930-1933, b. Luiz A. T., Tiago Q. T., Cherif F. M., Roberto L. A. H., J. Phys. Chem. A 2016, 120 (8), 1168-1174.
[13]
K. H Madsen, P. Blaha, and S. Karlheinz, J. Chem Phys. 2002, (117), 17, 8030-8035, b. Luiz A. T., Tiago Q. T., Marina G. R., Roberto R. A. J. Phys. Chem. A 2013, 117 (40), 10489-10496.
[14]
J. A. Platts et al, J. Phys. Chem. A 2011, (115), 194-200.
[15]
Blaha P, Schwarz K, Madsen GH, Kvasnicka D, Luitz J In: Schwarz K (ed) FP-L/APW + lo programme for calculating crystal properties, Technische Universität Wien, Vienna, 2001.
[16]
J. P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996 (77), 3865.
[17]
J. P. Desclaux, Comput. Phys. Commun. 1, 1969, 216.
[18]
D. D. Koelling and B. N. Harmon, J. Phys. C 1977, (10), 3107, b. Peter S., Franklin C., James T., Sean McGrady Chem. Eur. J. 2012, (18), 9476-9480.
[19]
Martin Pendas and V. Luana, The critic program, 1995-2003.
[20]
J. Haglund, F. G. Fernandez, G. Grimvall and M. Korling, Phys. Rev. Series 3. B – Condence Matter, 1993, (48), 11685-11691.
[21]
M. E. Straumantis and E. Z. Aka, J. Am. Chem. Soc. 1951, (73), 5643-5646.
[22]
P. Trucano and R. Chen Nature, JCS, 1976, (72), 446-455.
[23]
W. T. Barrett and W. E. Wallace, J. Am. Chem. Soc. 1954, (76), 366-369.
[24]
S. Sasaki, K. Fujino, and Y. Takeuchi, Proceedings of the Japan Academy, 1979, (55), 43-48.
[25]
M. Y. De Haan, National Bureau of Standards (U.S) Special Publication 1969, (301), 233-236.
[26]
F. Sfolphdon and J. Corbett Inorg. Chem. 1976, (15), 1820-1823.
[27]
S. Besnainou, M. Roux and R. Daudel, Compt. Rend. 1955, (241), 311, b. Alreza A., Royal M., Tianlv X., Steven R. K., Samantha J. Phys. Chem. Chem. Phys. 2018, 20 (38), 24695-24707.
[28]
R. F. W. Bader, T. T. Nguyen-Dang and Y. Tal, Rep. Prog. Phys. 1981, (44), 893, (b) R. F. W. Bader et al, J. Am. Chem. Soc. 1983, (105), 5061.
[29]
M. A. Spackman and E. N. Maslen, J. Phys. Chem. 1986, (90), 2020.
[30]
C. Gatti, P. Fantucci and G. Pacchioni, Thoer. Chim. Acta 1987, (72), 433.
[31]
W. L. Cao, C. Gatti, P. J. Macdougall and R. F. W. Bader, Chem. Phys. Lett. 1987, (141), 380.
[32]
J. Cioslowski, J. Phys. Chem. 1990, (94), 5496.
[33]
R. Glaser, R. F. Waldron and K. B. Wiberg, J. Phys. Chem. 1990, (94), 7357.
[34]
K. E. Edgecombe, R. O. Esquivel, V. H. Smith and F. Mullerplathe, J. Chem. Phys. 1992, (97) 2593.
[35]
G. I. Bersuker, C. Y. Peng and J. E. Boggs, J. Phys. Chem. 1993, (97), 9323.
[36]
R. F. W. Bader et al, J. Am. Chem. Soc. 1983, (105), 5061.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186